THE LEADING MARITIME CITIES OF THE WORLD

2022

A Menon Economics and DNV Publication
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>4</td>
</tr>
<tr>
<td>THE MARITIME INDUSTRY</td>
<td>6</td>
</tr>
<tr>
<td>THE LEADING MARITIME CITIES OF THE WORLD</td>
<td>12</td>
</tr>
<tr>
<td>INDICATORS FOR CITY RANKING</td>
<td>16</td>
</tr>
<tr>
<td>SHIPPING CENTERS</td>
<td>18</td>
</tr>
<tr>
<td>MARITIME FINANCE AND LAW</td>
<td>24</td>
</tr>
<tr>
<td>MARITIME TECHNOLOGY</td>
<td>30</td>
</tr>
<tr>
<td>PORTS AND LOGISTICS SERVICES</td>
<td>38</td>
</tr>
<tr>
<td>ATTRACTIVENESS AND COMPETITIVENESS</td>
<td>42</td>
</tr>
<tr>
<td>APPENDIX A: LIST OF OBJECTIVE INDICATORS OF 30 CITIES</td>
<td>46</td>
</tr>
<tr>
<td>APPENDIX B: METHODOLOGY AND DATA SOURCES</td>
<td>48</td>
</tr>
</tbody>
</table>
Dramatic changes have occurred since our last Leading Maritime Cities publication. We are still in a pandemic, more than two years after its initial outbreak. Countries and cities have been locked down, with severe consequences for trade, travel, and people’s mobility. Ships have been stuck in ports, and seafarers have been stuck onboard ships. Cargo delays are common, and container rates have skyrocketed. Still, the world economy is in surprisingly good shape, taking the consequences of the pandemic into account.

The second major change driver is the climate crisis. Although by no means a new phenomenon, the sentiment in the world in general, and the maritime community in particular, has changed dramatically recently. The technological progress is stunning, but we are still far from the GHG goals set by the IMO, the European Union and national authorities.

However, shipowners, charterers and cargo owners, and financial providers are preparing for a low- or even zero-carbon future, and we can expect rapid technological progress in the implementation of zero-carbon fuels in the next ten years. The IMO, the European Union and national authorities, and shipping businesses and people to connect and thrive. Like its previous editions, the LMC 2022 report covers 5 pillars – Shipping Centers, Maritime Finance and Law, Maritime Technology, Ports and Logistics, Attractiveness and Competitiveness – on which the leading maritime cities are benchmarked.

Under each pillar, a comprehensive set of objective and subjective indicators have been considered (40 in total). For the 2022 report, some new and more comprehensive indicators have been added, including data sources such as survey-based data and financial statements, to ensure the analysis is based on reliable and complete data for the various cities, which ultimately allow for a more refined benchmarking of the relative performance of each city compared to the previous report. We have also introduced new objective indicators to benchmark key development in the green transition.

The subjective indicators under each pillar come in the form of the perception and assessment by nominated business executives – mostly shipowners and managers – from all around the globe. Of these 280 experts called upon for this study, around 50% are based in Asia, 25% in Europe, and the remaining 25% are from America, the Middle East and Africa.

Singapore maintains its position as the leading maritime city of the world during the pandemic and the emerging green transformation of the industry. Singapore has been able to retain its position as a leading maritime hub due to its strength in all pillars. However, the top positions on the pillars have changed. Singapore is still number one on the Attractiveness and Competitiveness pillar. This year Singapore has also outperformed all other cities on Maritime Technology. A consistent strategy for innovation, targeting start-ups, and investment in digital technologies has paved the way for Singapore’s position on Maritime Technology.

The 2022 edition of the LMC (Leading Maritime Cities) report is back, with fresh insight about which maritime cities provide the best support, in terms of soft and hard infrastructure and world-class talent, to allow maritime businesses and people to connect and thrive. Like its previous editions, the LMC 2022 report covers 5 pillars – Shipping Centers, Maritime Finance and Law, Maritime Technology, Ports and Logistics, Attractiveness and Competitiveness – on which the leading maritime cities are benchmarked. Under each pillar, a comprehensive set of objective and subjective indicators have been considered (40 in total). For the 2022 report, some new and more comprehensive indicators have been added, including data sources such as survey-based data and financial statements, to ensure the analysis is based on reliable and complete data for the various cities, which ultimately allow for a more refined benchmarking of the relative performance of each city compared to the previous report. We have also introduced new objective indicators to benchmark key development in the green transition.

The subjective indicators under each pillar come in the form of the perception and assessment by nominated business executives – mostly shipowners and managers – from all around the globe. Of these 280 experts called upon for this study, around 50% are based in Asia, 25% in Europe, and the remaining 25% are from America, the Middle East and Africa.

Singapore maintains its position as the leading maritime city of the world during the pandemic and the emerging green transformation of the industry. Singapore has been able to retain its position as a leading maritime hub due to its strength in all pillars. However, the top positions on the pillars have changed. Singapore is still number one on the Attractiveness and Competitiveness pillar. This year Singapore has also outperformed all other cities on Maritime Technology. A consistent strategy for innovation, targeting start-ups, and investment in digital technologies has paved the way for Singapore’s position on Maritime Technology.

The 2022 edition of the LMC (Leading Maritime Cities) report is back, with fresh insight about which maritime cities provide the best support, in terms of soft and hard infrastructure and world-class talent, to allow maritime businesses and people to connect and thrive. Like its previous editions, the LMC 2022 report covers 5 pillars – Shipping Centers, Maritime Finance and Law, Maritime Technology, Ports and Logistics, Attractiveness and Competitiveness – on which the leading maritime cities are benchmarked. Under each pillar, a comprehensive set of objective and subjective indicators have been considered (40 in total). For the 2022 report, some new and more comprehensive indicators have been added, including data sources such as survey-based data and financial statements, to ensure the analysis is based on reliable and complete data for the various cities, which ultimately allow for a more refined benchmarking of the relative performance of each city compared to the previous report. We have also introduced new objective indicators to benchmark key development in the green transition.

The subjective indicators under each pillar come in the form of the perception and assessment by nominated business executives – mostly shipowners and managers – from all around the globe. Of these 280 experts called upon for this study, around 50% are based in Asia, 25% in Europe, and the remaining 25% are from America, the Middle East and Africa.

Singapore maintains its position as the leading maritime city of the world during the pandemic and the emerging green transformation of the industry. Singapore has been able to retain its position as a leading maritime hub due to its strength in all pillars. However, the top positions on the pillars have changed. Singapore is still number one on the Attractiveness and Competitiveness pillar. This year Singapore has also outperformed all other cities on Maritime Technology. A consistent strategy for innovation, targeting start-ups, and investment in digital technologies has paved the way for Singapore’s position on Maritime Technology.
Maritime trade accounts for almost 90% of the world’s commerce, but has been severely tested in recent years. The global seaborne trade’s current situation is subject to a multifaceted problem. Before COVID-19, strained trade relations among several nations (e.g., between global economic superpowers China and the USA, and in relation to the UK’s ratification of the withdrawal agreement with the EU) were already threatening disruptions to maritime trade and supply chains. With the onset of COVID-19 as a global pandemic in March 2020, international trade collapsed with lockdowns, travel restrictions, fast-rising unemployment, and temporary oil and stock market crashes. Supply chain disruptions, demand contractions and global economic uncertainty resulted in a drop in seaborne trade across different shipping segments in all regions.

Since shipping continues to shoulder the responsibility of providing uninterrupted shipments of food, energy commodities and medical supplies across the continents, shipping companies, by necessity, must be agile and adaptable to this fluid situation and focus on building effective response strategies and plans. To support the maritime industry in achieving this, the IMO and other systemic maritime organizations joined efforts in defining actions and practices on critical matters such as onboard safety, seafarer contracts and repatriations, and supply of necessary provisions, supplies, and vessel spare parts.

With the IMF forecasting a rise in world GDP in 2022, various growth projections for global seaborne trade have been published, ranging between 4 to 6% in 2023. These growth projections are subject to the extent and effectiveness of policy intervention measures aimed at stimulating growth in various regions, but clear signs of recovery could already be seen by mid-2021 when overall global average trade volumes returned to pre-COVID levels, surpassing most of 2020’s expectations. Market performance for different shipping segments has been uneven, with some experiencing exceptional times (with faster recoveries for containers, LPG, dry bulk and LNG, with approx. 6-12 months to recovery from the start of the pandemic in March 2020), while others are continuously struggling to make ends meet (e.g., with oil and cruise segments still under pressure with expected recovery timelines between 24 and 36 months from March 2020).

With the rebound in consumer demand for goods from Q3 2020 onwards, following the initial disruption in the global logistics sector, the effects have been felt differently by various maritime players, leading to new measures of adaptation.

- Ongoing prolonged port congestions and increasing backlog for most major ports. Indicatively, during November 2021, Singapore recorded close to 60% level of congestion, followed by Hong Kong at 55% and Shanghai at 45%, while LA ports in the USA have had more than 80 vessels anchored during the same period (Bloomberg, 2021). During “normal” times, ports typically experience 10% level of congestion and rarely surpass the 20% mark. As a consequence, shippers are opting to unload goods destined for LA in Seattle or even Florida, then arranging for long rail or truck transportation (Journal of Commerce Online, 2021).
- Booming freight rates for containerships in 2021. Large owners/operators such as Maersk Line, CMA CGM and COSCO are achieving record profits for back-to-back quarters. On the other hand, shippers around the world are looking into adapting their logistics plans and practices to counter the impact of costly freight rates. For example, IKEA has moved a significant portion of its production base from China to Turkey to ease the logistics strain (Reuters, 2021). Coca-Cola is now packaging some of its material and products in large palleted blocks or sacks for transportation in chartered dry bulk vessels (Tradewinds, 2021).
- Continuing disruption to economic growth: In 2021, the IMF is forecasting a 6.2% recovery in global GDP, compared to 5.8% in 2020, with growth projections for global seaborne trade having been published in 2022, ranging between 4% and 6% in 2023. These growth projections are subject to the extent and effectiveness of policy intervention measures aimed at stimulating growth in various regions, but clear signs of recovery could already be seen by mid-2021 when overall global average trade volumes returned to pre-COVID levels, surpassing most of 2020’s expectations. Market performance for different shipping segments has been uneven, with some experiencing exceptional times (with faster recoveries for containers, LPG, dry bulk and LNG, with approx. 6-12 months to recovery from the start of the pandemic in March 2020), while others are continuously struggling to make ends meet (e.g., with oil and cruise segments still under pressure with expected recovery timelines between 24 and 36 months from March 2020).

With the rebound in consumer demand for goods from Q3 2020 onwards, following the initial disruption in the global logistics sector, the effects have been felt differently by various maritime players, leading to new measures of adaptation.

- Ongoing prolonged port congestions and increasing backlog for most major ports. Indicatively, during November 2021, Singapore recorded close to 60% level of congestion, followed by Hong Kong at 55% and Shanghai at 45%, while LA ports in the USA have had more than 80 vessels anchored during the same period (Bloomberg, 2021). During “normal” times, ports typically experience 10% level of congestion and rarely surpass the 20% mark. As a consequence, shippers are opting to unload goods destined for LA in Seattle or even Florida, then arranging for long rail or truck transportation (Journal of Commerce Online, 2021).
- Booming freight rates for containerships in 2021. Large owners/operators such as Maersk Line, CMA CGM and COSCO are achieving record profits for back-to-back quarters. On the other hand, shippers around the world are looking into adapting their logistics plans and practices to counter the impact of costly freight rates. For example, IKEA has moved a significant portion of its production base from China to Turkey to ease the logistics strain (Reuters, 2021). Coca-Cola is now packaging some of its material and products in large palleted blocks or sacks for transportation in chartered dry bulk vessels (Tradewinds, 2021).

The past decade has presented new obstacles and possibilities for organizations vying for a global reach and an international footprint, which impacted markets and the economy on a global scale. Organizations involved in maritime transportation have had a significant impact on the economies of nations regardless of their size or type. Globalization encourages businesses to take active measures to defend their own market from competition while also seeking new, appealing markets for their goods and services. Regulatory and technological trends, such as the presence of trading blocs like the EU/EEA, NAFTA, RCEP and the ability of companies to manage cargo flows, utilizing modern IT systems, are removing barriers to cross-border mobility and reducing associated “barrier costs.”

Achieving complex trading networks for these organizations is key, to benefit from opportunities in capitalizing on labor cost differentials and availing raw resources in specific nations. The most prevalent method for transporting raw materials and merchandise has been and will continue to be seaborne routes. In 2019, the total annual global seaborne trade was at 11.8 billion metric tons of goods transported, up from 8.36 billion metric tons in 2011 (UNCTAD, 2021).
Maritime shipping, especially driven by vessel upsizing trends, is utilizing economies of scale and standardization of vessel tech-

nologies and design to achieve great reductions in transportation costs. In 2021, the largest containerships can reach up to 23,000 TEU (“twenty-foot equivalent unit”) capacity, shooting up from 8,000 TEU capacity in 2006. Sufficient infrastructure needed to accommodate the increasing seaborne trade, led by state-of-the-

art international ports, is deemed a necessity. Hence, port cities are being coined “frontline soldiers of globalization” (Ducruet and Lee, 2006). A strong maritime player, Chinese conglomerate

and port operator COSCO continues to create an unparalleled

global shipping nexus of ports and warehousing infrastructure,

lately upping their ownership stake of Piraeus Port to 67%, as

well as buying a 35% minority stake at a container terminal in the

Port of Hamburg and a 60% stake at Chancay Terminal in Peru,

making this the first terminal project invested in by Chinese

companies in South America.

Nowadays, most maritime services are globalized and often

located around ship owning companies. Ship finance was among

the first to globalize, whilst legal services were the least flexible

and thus are still being provided by their individual regional entities into one global network.

DIGITAL TRANSFORMATION, CYBER SECURITY AND INNOVATION

Digitalization involves the transformation of key business

operations and affects products, services, and processes, as

well as organizational structures and management concepts (Matt

et al., 2015). Digital transformation of the maritime industry is

under way, challenging existing business models but also offering

new opportunities.

The level of adoption is varied in the sector and still lacking,

compared to other industries, in the proliferation of digitaliza-

tion in the entire scope of maritime transport and services. It is

currently most pronounced in vessel navigation systems and in

streamlining cargo handling operations, including cargo optimal

routing, monitoring, warehouse, and use of AI-powered algo-

rithms for optimized stowage plans for container ships.

Other than the improvement and interconnectivity of informa-

tion and cargo flows, and vessel monitoring, some of the other
digital initiatives are aiming at the automation and centralization

of internal and external services, such as bookings, orders, and
customer support. For example, in June 2020, MSC introduced
the instant-quote tool to provide easy access to its rates for ocean
shipping, to make its customers' supply chain easier to manage
and improve end-to-end efficiency (UNCTAD, 2020). In April
2020, Maersk’s online application – featuring cargo release,
calculation of fees and online payment for immediate release
 functionalities – registered an 85% increase in transactions as

customers started ordering more remotely and sought to track

cargo more efficiently (UNCTAD, 2020).

Some maritime players are also upgrading their infrastructural

and assets’ operations based on cyber-physical systems (systems

coupling digital software with hardware). Emerging technolo-
gies like blockchain-based utilization are proving to be effective

in customs clearance and management, and the standardization

of paper-based procedures (Yang, 2019). On the vessels side, the

need to integrate smart technologies during operation supported

by “big data analysis” is becoming more prevalent, although an

effective level of integration can be more easily achieved if incor-

porated during the newbuilding stage (Sullivan et al., 2020).

Such maritime digital transformation causes fundamental

organizational changes in traditional business practices by the

implementation and use of digital technology, redefining existing

business capabilities, processes, and relationships, and thus

new opportunities are enabled, and value is created, captured and
delivered (Tijan et al., 2021). Crucial for the success of digital

transformation is the alignment between both the business and
digital strategies as well as the acceptance of involved players
(port administrations, shipowners, shippers, service providers) to

cooperate. On the other hand, the main barriers for digital trans-

formation appear to be the high initial implementation costs, low

quality of offshore internet connections, aging decision-makers,

and the lack of investment initiatives and risk aversion especially
due to the uncertainty sentiment induced by the COVID-19

demand.

Without digitalization come cyber security concerns which

require constant monitoring of both interconnected IT (standard

information systems) and OT (operation and control systems)

infrastructures to detect real-time threats. Increasing reliance

on automated and networked systems of equipment and tech-

nologies greatly affects the safety and livelihood of crews, vessels,
cargo, and ports. Indeed, vessels increasingly shift their

connectivity and control to OT systems (providing tremendous

benefits in terms of safety, availability, and energy efficiency) and

with ports’ control systems for their OT network (connecting

RTGs, STS cranes, traffic control and vessel berthing systems,
cargo handling and safety and security systems), this is opening

doors to cybercrime which is recognized as the biggest emerging

challenge of the maritime industry. Hackers do not discriminate

they are hitting organizations large and small, with or without

abundant cybersecurity resources (Vessel Automation 2021).

The number of cyberattacks in the maritime industry is

increasing at an alarming rate in recent years, some targeting

facilities and companies ashore whilst others are focusing on the

maritime fleet, resulting in breaches to IT systems, hardware,
human, sensors, data confidentiality, with the gain of unauthorized access to manipulate or disrupt business operations. In 2020, cyber-

attacks on the maritime industry’s OT systems increased by 900% since 2017 with 50 significant OT hacks reported in 2017, rising
to 120 in 2018 and more than 310 in 2019. In 2020, more than 500

major cyber security breaches were expected, with substantially

more being unreported (Vanguard, 2020).

In October 2021, multiple Greek shipping companies were

hit by a ransomware attack that spread through the systems of a

popular, well-established IT consulting and service provider,
Global concerns about invasion of aquatic organisms, SOx emissions and GHG emissions from the shipping industry have led the IMO to implement three initiatives aimed at limiting the impact of these in recent years. The first two initiatives relate to ballast water management and the carriage ban of fuel with more than 0.50% sulphur content unless scrubbers are installed. The third initiative is the IMO’s ambitious GHG strategy (adopted in April 2018) which sets out a vision to reduce GHG emissions from international shipping and phase them out as soon as possible in this century. Regulations around the GHG strategy are expected to be the main challenge for shipowners in the medium to long term.

While the ambitions of the IMO are clear, the road to achieving these ambitions remains less so, e.g., which policy measures can the IMO invoke to incentivize the needed change? This is an ongoing process in the IMO. Different measures were considered and widely discussed, and the IMO decided to introduce a combination of technical and operational measures. Whilst EEXI (Energy Efficiency Existing Ship Index) is a technical measure, looking at the design of the ship in a comparable way as EEDI (Energy Efficiency Design Index) does for newbuildings, the CII (Carbon Intensity Indicator) measure is an operational measure considering the actual fuel consumption and distance travelled for each individual ship in service.

In addition to the IMO’s CII Rating Scheme, other organizations – such as the EU, Sea Cargo Charter and financial institutions – have their own environmental compliance requirements (which in some cases are more ambitious than the IMO’s GHG Strategy) with a goal to align global shipping with society’s goals and to promote and incentivize the decarbonization of international shipping.

• “Green Deal” drives the EU policy initiatives, intending to achieve a climate-neutral Europe (including ships trading in Europe) by 2050. The shipping industry has estimated that a 90% reduction in GHG emissions from maritime transport relative to 1990 is needed by 2050, with an intermediate (and new) overarching EU target for 2030 being 55% (instead of the original 40%) reduction relative to 1990. The “Fit for 55” package of policy measures is under review by the EU Commission.

• “The Poseidon Principles” is an initiative that is being implemented by financial institutions. Some of the signatories include BNP Paribas, Credit Agricole, Citi, Credit Suisse, ING, SuMi Trust, Nordea, DNB, Danske Bank. The Poseidon Principles establish a framework for assessing and disclosing the climate alignment of ship finance portfolios. They set a benchmark for what it means to be a responsible bank in the maritime sector and provide actionable guidance on achieving this. The Poseidon Principles are consistent with the IMO’s GHG Strategy.

• “Sea Cargo Charter” was launched in 2020, applicable to bulk ship charterers with signatories such as Trafigura, Dow, Total, Shell, Equinor, Gunvor, LDC, Cargill and AngloAmerican. The Sea Cargo Charter will measure GHG emission intensity and total GHG emissions of the signatories’ chartering activities annually and will assess their climate alignment relative to established decarbonization trajectories. Signatories will commit to making compliance with the Sea Cargo Charter contractual in their new chartering activities. They will use the Sea Cargo Charter Clause in charter parties and work together with shipowners, ship managers and business partners to meet this requirement. The Sea Cargo Charter is consistent with the IMO’s GHG Strategy.

WHERE NEXT?

Considering where the maritime industry has been in recent years and where it is heading (for a global reach in an evolving maritime regulatory and environmental landscape and bound for a cyber-sensitive digital transformation), which cities around the world will provide the best support, in terms of soft and hard infrastructure and world-class talent, to allow maritime businesses and people to connect and thrive?
CITIES – ENGINES OF INNOVATION AND GROWTH

Urbanization is one of the strongest global megatrends in this century, with a clear shift in importance from nations to cities (Moretti, 2012; Quartz, 2015). Today, close to 55% of the world’s population – 4.2 billion inhabitants – live in cities and this trend is expected to continue so that by 2050, nearly 70% of all people in the world will live in cities. More than 80% of global GDP is generated in cities (World Bank, 2020). Population projections show that virtually all growth over the next 30 years will come in urban areas. Companies are thus increasingly focusing on city regions when developing their strategies for where to relocate or expand their operations.

Three distinct features or common indicators of “global cities” are (Goerzen et al., 2013):

- High levels of connectivity with other locations, as they typically have a good physical information and communication infrastructure that facilitates the international transfer of goods, people, and information. Specialized providers of high value-added services, such as financial, legal, and consultancy, which are important to the functioning and performance of multinational firms’ local and global operations. Knowledge-based industries tend to centralize in a few leading city regions – San Francisco for ICT, Boston for biotechnology, Houston for O&G, New York for finance, and Singapore for maritime. This is not, however, a “winner-takes-it-all” game. There is room for cities with leadership in niches of industries, like Geneva in medtech, and London in fintech, or for cities with regional leadership such as Shenzhen in ICT and Singapore’s Biopolis for biomedical science.
- An enabling environment, characterized by the presence of a culturally diverse body of players, including big corporations, highly specialized professional talent, and academia. At their core, these cities possess the capabilities for servicing, managing, and financing the global operations of firms and markets (Sassen, 2001). It is where global firms connect, build relationships and transfer knowledge, maintaining a level of connectivity, often seen as a means of achieving economic development and improving their competitiveness (Pain et al., 2015).
- Shipping is a global business, encompassing a complex variety of actions taken and services performed, by an equally complex variety of players. Over time, many of these actors gather in specific geographic regions, or cities, thus forming so-called clusters. A maritime cluster can broadly be defined as “a group of industries that are directly and indirectly related to shipping and situated within a certain geographic area” (Shinohara, 2010). Maritime clusters make distinct contributions to the development of national or regional economies and provide strong support for innovation and technological development in maritime industries (Shi et al., 2019). Their vital role in enabling international trade and the global supply chain is also evident in their provision of integrated logistics and maritime services in addition to traditional cargo handling-related activities (Zhang and Lam, 2013).

Critical success factors for a maritime city may include (Monteiro et al., 2013):

- Acknowledgment of the maritime cluster as a cornerstone of the national and regional economy.
- Adoption of favorable policies, to allow actors to stay competitive in a globalized and evolving environment.
- Engagement with other maritime clusters, utilizing own strengths and supplementing for shortfalls.
- Involvement of maritime education centers, financial institutions, trade associations and other stakeholders, allowing for cooperation in businesses and R&D, information sharing, and risk sharing through investments in new markets.

Most maritime clusters owe their existence to the city’s past success in its role as regional port/hub of commerce. But this is not enough, as proven by cities with a declining maritime footprint, such as San Francisco, Naples, Liverpool, and New Orleans, due to decreasing demand for traditional port services amid fierce competition (Merk, 2013). On the contrary, the operators of the Singapore maritime cluster successfully maintained their cluster’s relevancy by modernizing their capacity to accommodate increasingly large ships and high cargo volumes and to offer complex, highly specialized logistical services, while catering to specialized needs for maritime finance, insurance, bunkering and other value-added services (Jakobsen et al., 2017). Local governmental entities and maritime associations have greatly contributed to that effect by adopting and implementing pro-business policy measures, as well as continuously seeking input and feedback from industry actors, for Singapore to remain an attractive location for maritime business establishments (Osman et al., 2021).
MARITIME COMPANIES – RESTRUCTURING WITHIN A GLOBAL PLAYGROUND

Aware of such international competition, cities are developing strategies to enhance their attractiveness to highly productive and innovative companies, and to talented individuals. The more mobile the companies, the stronger the competition among cities to attract them. As the maritime industry is global in nature, many maritime companies are mobile entities seeking to take advantage of localization advantages in different countries. This, combined with the maritime industry being a high value-added industry, means that the fight to attract maritime companies is tough, especially for shipping being the most highly mobile sector within the maritime industry. This also implies that it may be easy to lose maritime business activities. The gains from winning the location race are hence higher for the less mobile part of the industry.

Specialized knowledge-based services are probably the least mobile companies in the maritime industry. The reason for this is that knowledge-based companies often have links to universities and are deeply embedded in the local milieu; for example in their reliance on specialized local competence. Another important point, following from the fact that firms increasingly split up their value chains, is that cities compete to attract activities – not companies. Winners will be those cities which are able to attract: • Science and higher education • Owners and headquarters • R&D – product and technology development • Financial, legal, and other sophisticated business services

While many cities are important centers in today’s maritime industry, some researchers suggest that we may see a future concentration of shipping activity (Center for Liveable Cities, 2014). The international maritime expert Martin Stopford was one of those who proposed that we will see a development of two or three global centers characterized as “shipping super cities” – one city in each of the eight-hour time zones (Asia, Europe and the Americas). This will mean that some of today’s shipping centers will lose importance to a few global centers that will act as shipping service hubs. Stopford also went further, dividing the cities into cargo port and shipping services ports. Cargo port cities, such as Rotterdam and Shanghai, are mainly driven by their role of transporting cargo to the regional markets. In shipping services ports, on the other hand, the port is secondary while offering other services to the international shipping industry will be key.

DRIVERS OF COMPETITIVENESS

There are many interconnected factors that drive the attractiveness of a city and the competitiveness of the industries located there: • Strategic location • Favorable and stable political framework • Transparent and efficient legal framework • Proximity to large, demanding customers • Local rivalry – creates incentives for continuous improvements and innovation • Abundance of suppliers and service providers • Specialized universities and research institutions • Large pool of talent • Rich and open flow of knowledge and ideas • Relationships based on trust • Meritocratic education and career system • Soft location factors – an attractive place to live for families and individuals

Together, these factors produce spirals of self-reinforcing growth – or decline, if the factors are absent. The mechanisms that drive industry competitiveness are summarized in the model below.

For the maritime industry in a city to prosper, two conditions must be satisfied: the companies must be competitive, and the city must be attractive as a host for these companies. These two conditions are mutually dependent: the companies gain their competitiveness from resources available in the city – for example access to capital, talent, and specialized supplies – and the price they must pay for these resources. Accordingly, the attractiveness of the city increases when competitive companies are present in the city. Hence, the clue is to attract the winners (Jakobsen et al 2003). Over time, the attractiveness of the cities is gradually shaped by the dynamics of the industry. In an industry with strong cluster dynamics, knowledge is continuously improved and dispersed, upgrading both companies and resources. Finally, governments play a central role in defining the attractiveness of the city. Through various public policy factors like taxes and subsidies, they determine the price of capital, labor, and other input factors. The quality of the resources is to a large extent determined by investments in infrastructure, education, and R&D. Key institutions, including cluster facilitators, contribute to making a location attractive through active engagement with the maritime industry and introducing initiatives and programs based on industry feedback (Osman, 2020).

The four main elements in the model, public policy factors, the competitiveness of the companies, the attractiveness of the cities, and finally, the dynamics of the industry clusters, are measured and benchmarked for maritime cities across the world. The results for the top 50 cities are presented in this report.

BENCHMARKING BASED ON OBJECTIVE & SUBJECTIVE INDICATORS

This Leading Maritime Cities report is in its fifth edition. The ranking is based on a combination of objective data from leading international sources and subjective expert assessment to evaluate and benchmark the top 50 leading maritime cities. This approach offers the advantage of considering both hard facts (objective indicators) as well as the subjective assessment by nominated maritime business executives, owners and academics from all around the globe. Expert opinions are of particular importance in areas that are difficult to measure with available objective data at city level (such as regulations, cluster dynamics, technological expertise etc.).

The identification of the top 50 maritime cities in the world is conducted by using a bottom-up approach, whereby all cities with some level of maritime activity (a sample of 15,000+ cities) are narrowed down to a sample of 50 cities based on a ranking of 25 objective maritime indicators across four (out of five) pillars. The four pillars include Shipping, Maritime Finance & Law, Maritime Technology and Port & Logistics. These cities are thereafter assessed by 280 maritime experts across the world along all five pillars, and their assessment in combination with the objective data is used to rank the sample of 50 cities. This final round of rankings gives us the top 50 leading maritime cities of the world.

Subjective indicators are based on information we have gathered through the “Leading Maritime Cities 2022” survey. In this survey, maritime experts from all over the world with different backgrounds were asked to provide qualitative assessments on topics like green transformation, digitalization, competitiveness, and innovation. Furthermore, the 280 experts have ranked the top five or top three maritime cities on shipping, finance, technology and port/logistics, together with six other dimensions.

With this data we have created a scoring system based on experts’ ranking of cities, where the city ranked first gets 5 points, the city ranked second gets 4 points etc. At the end, the total points under each ranking were summarized for each city, and these points are used as scores on each subjective indicator in our top 50 ranking. Detailed information about the composition of experts can be found in Appendix B.

The ranking approach is illustrated as follows:

THEORETICAL MODEL OF INDUSTRIAL COMPETITIVENESS

Source: Jakobsen et al, 2003 (Attracting the winners)

EVALUATION FRAMEWORK

COMPANY COMPETITIVENESS

OPERATIONAL EFFICIENCY & STRATEGIC RESOURCES

CLUSTER DYNAMICS

Demanding customers
Local rivalry
Cooperation
Open information and trust
Mobility of competence

LONG TERM RELATIVE INDUSTRY PERFORMANCE

CITY ATTRACTIVENESS

(Availability, quality and price)
Talent, capital, infrastructure, connectivity, business friendliness, living conditions, etc.

PUBLICATION POLICY

Fiscal and monetary policy
Tax & subsidies
Regulations
Labour market
Education & R&D

LEADING MARITIME CITIES 2022

50 LEADING MARITIME CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)

50 NOMINATED CITIES

(Initial ranking – benchmarked on objective indicators only, across 4 pillars)
There are numerous ways to assess the strength of the maritime cities. Data sources that are widely used and renowned in the industry have been used. Methodology and data sources are described in the appendices.

In this year’s report, for the objective assessment, previously used objective indicators were revised to be based on new and updated databases whilst new objective indicators were also included. The overarching aim has been to ensure that the analysis is replicable and based on reliable, complete and high-quality data for the various cities, hence, adjustments to the data sources and/or indicators where deemed necessary. For the five pillars in this study, a total of 28 objective indicators have been used.

For the subjective assessment, this comes in the form of the perception and assessment by key business executives — mostly shipowners and managers — from all around the globe. Of the 280 experts called upon for this study, around 50% are based in Asia, 25% are in Europe, and the remaining 25% are from America, the Middle East and Africa. The study uses a ranking model consisting of both objective and subjective indicators for the top 50 maritime cities across five pillars. Each pillar is weighted equally (a weight of 20%) in the global top 50 city ranking. The five pillars of the study are the same as in the last edition of the report: Shipping, Maritime Finance and Law, Maritime Technology, Ports and Logistics, and Attractiveness and Competitiveness. Within each pillar, all indicators are weighted equally, e.g., if a pillar consists of five indicators, all indicators will get a weight of 20%. The full list of indicators is described in the tables below.

Indicators for City Ranking

Objective Indicators

Shipping

<table>
<thead>
<tr>
<th>Objective Indicator</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fleet size</td>
<td>Number of ships registered in the city</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>2. Fleet size</td>
<td>Number of ships registered in the city</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>3. Fleet value</td>
<td>fleet value for each city calculated by multiplying the tonal fleet value with the city's corresponding tonal fleet size</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>4. Number of shipping companies with HQ in the city</td>
<td>number of shipping companies with more than 5 ships (owners and managers)</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>5. Operational revenue for shipping companies</td>
<td>operational revenue (from shipping companies) in USD (2018, 2019 and 2021)</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>6. Low carbon intensive fuel types - share of fleet</td>
<td>share of low carbon intensive fuel types in the entire fleet</td>
<td>Clarkson World Fleet Register</td>
</tr>
</tbody>
</table>

Objective Indicators

<table>
<thead>
<tr>
<th>Objective Indicator</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Leading shipping centre</td>
<td>Which cities do you consider the five leading shipping centres of the world?</td>
<td>Global maritime expert assessments</td>
</tr>
<tr>
<td>2. Attractiveness for headquarters</td>
<td>If you were to choose your facility location, which cities do you consider the five most attractive location for operational offices?</td>
<td>Global maritime expert assessments</td>
</tr>
</tbody>
</table>

Maritime Finance and Law

<table>
<thead>
<tr>
<th>Objective Indicator</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Legal expertise by Who’s Who</td>
<td>Number of legal experts per city as listed by Who’s Who</td>
<td>Who’s Who Legal 2021</td>
</tr>
<tr>
<td>2. Number of maritime lawyers companies</td>
<td>number of maritime lawyers companies registered in each city</td>
<td>Who’s Who Legal</td>
</tr>
<tr>
<td>3. Insurance premiums</td>
<td>total insurance premiums paid by ships and companies to the highest rated maritime insurance companies (2018-2020)</td>
<td>KMCA, DLRZ, Bureau Veritas (LR2 database, most audited data by indexation 2021)</td>
</tr>
<tr>
<td>4. Loaned vessels</td>
<td>fuel of vessels registered in the ship registry</td>
<td>KMCA, DLRZ, Bureau Veritas, Lloyds Register (LR2 database, most audited data by indexation 2021)</td>
</tr>
<tr>
<td>5. Shipping bank portfolio</td>
<td>Top shipping banks ranked by the amount of loans to shipping companies</td>
<td>London (BIL) and Paris (BQBS)</td>
</tr>
<tr>
<td>6. Number of listed maritime owners companies</td>
<td>number of listed maritime owners companies</td>
<td>Crain’s list, number of companies listed in the stock exchange</td>
</tr>
</tbody>
</table>

Ports & Logistics

<table>
<thead>
<tr>
<th>Objective Indicator</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. T100 report</td>
<td>number of T100 ships handled per port in 2021</td>
<td>Alphaliner (T100 list)</td>
</tr>
<tr>
<td>2. Size of port operators</td>
<td>number of ships handled by top 20 port operators in the world</td>
<td>Alphaliner (T100 list)</td>
</tr>
<tr>
<td>3. Line Shipping Connectivity Index</td>
<td>Line Shipping Connectivity index, disaggregated per port level, 2021 data</td>
<td>UNCTAD 2021</td>
</tr>
<tr>
<td>4. ULR available at ports</td>
<td>ports with available ULR (multi-ship) services</td>
<td>Data retrieved from the integrated data service 'Hub' of the ULR Network (2021)</td>
</tr>
</tbody>
</table>

Attractiveness & Competitiveness

<table>
<thead>
<tr>
<th>Objective Indicator</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Leading maritime centre of the world</td>
<td>number of shipping companies with HQ in the city</td>
<td>Global maritime expert assessments</td>
</tr>
<tr>
<td>2. Number one choice for location of headquarters</td>
<td>number of companies considering each city as the most attractive location for headquarters</td>
<td>Global maritime expert assessments</td>
</tr>
</tbody>
</table>

Maritime Technology

<table>
<thead>
<tr>
<th>Objective Indicator</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shipyards (COT)</td>
<td>number of shipyards in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>2. Shipyards (COT) - low carbon intensive shipyards</td>
<td>number of shipyards in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>3. Operational revenue from companies in maritime technology industry</td>
<td>operational revenue (from companies in the maritime technology industry) in USD (2018, 2019 and 2021)</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>4. Closest fleet</td>
<td>share of vessels at the closest classification society to the port</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>5. Market value of ships built at shipyards</td>
<td>number of shipyards producing ships in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>6. Number of newbuilding projects</td>
<td>number of newbuilding projects in each city</td>
<td>Bunker & Platts (Vard)</td>
</tr>
</tbody>
</table>

Subjective Indicators

<table>
<thead>
<tr>
<th>Objective Indicator</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Maritime technology centre of the world</td>
<td>Which cities do you consider the five leading centres for maritime technology of the world?</td>
<td>Global maritime expert assessments</td>
</tr>
<tr>
<td>2. Shipyards (COT) - low carbon intensive shipyards</td>
<td>number of shipyards in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>3. Operational revenue from companies in maritime technology industry</td>
<td>operational revenue (from companies in the maritime technology industry) in USD (2018, 2019 and 2021)</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>4. Closest fleet</td>
<td>share of vessels at the closest classification society to the port</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>5. Market value of ships built at shipyards</td>
<td>number of shipyards producing ships in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>6. Number of newbuilding projects</td>
<td>number of newbuilding projects in each city</td>
<td>Bunker & Platts (Vard)</td>
</tr>
</tbody>
</table>

Subjective Indicators

<table>
<thead>
<tr>
<th>Objective Indicator</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Maritime technology centre of the world</td>
<td>Which cities do you consider the five leading centres for maritime technology of the world?</td>
<td>Global maritime expert assessments</td>
</tr>
<tr>
<td>2. Shipyards (COT) - low carbon intensive shipyards</td>
<td>number of shipyards in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>3. Operational revenue from companies in maritime technology industry</td>
<td>operational revenue (from companies in the maritime technology industry) in USD (2018, 2019 and 2021)</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>4. Closest fleet</td>
<td>share of vessels at the closest classification society to the port</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>5. Market value of ships built at shipyards</td>
<td>number of shipyards producing ships in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>6. Number of newbuilding projects</td>
<td>number of newbuilding projects in each city</td>
<td>Bunker & Platts (Vard)</td>
</tr>
</tbody>
</table>

Subjective Indicators

<table>
<thead>
<tr>
<th>Objective Indicator</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Maritime technology centre of the world</td>
<td>Which cities do you consider the five leading centres for maritime technology of the world?</td>
<td>Global maritime expert assessments</td>
</tr>
<tr>
<td>2. Shipyards (COT) - low carbon intensive shipyards</td>
<td>number of shipyards in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>3. Operational revenue from companies in maritime technology industry</td>
<td>operational revenue (from companies in the maritime technology industry) in USD (2018, 2019 and 2021)</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>4. Closest fleet</td>
<td>share of vessels at the closest classification society to the port</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>5. Market value of ships built at shipyards</td>
<td>number of shipyards producing ships in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>6. Number of newbuilding projects</td>
<td>number of newbuilding projects in each city</td>
<td>Bunker & Platts (Vard)</td>
</tr>
</tbody>
</table>

Subjective Indicators

<table>
<thead>
<tr>
<th>Objective Indicator</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Maritime technology centre of the world</td>
<td>Which cities do you consider the five leading centres for maritime technology of the world?</td>
<td>Global maritime expert assessments</td>
</tr>
<tr>
<td>2. Shipyards (COT) - low carbon intensive shipyards</td>
<td>number of shipyards in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>3. Operational revenue from companies in maritime technology industry</td>
<td>operational revenue (from companies in the maritime technology industry) in USD (2018, 2019 and 2021)</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>4. Closest fleet</td>
<td>share of vessels at the closest classification society to the port</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>5. Market value of ships built at shipyards</td>
<td>number of shipyards producing ships in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>6. Number of newbuilding projects</td>
<td>number of newbuilding projects in each city</td>
<td>Bunker & Platts (Vard)</td>
</tr>
</tbody>
</table>

Subjective Indicators

<table>
<thead>
<tr>
<th>Objective Indicator</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Maritime technology centre of the world</td>
<td>Which cities do you consider the five leading centres for maritime technology of the world?</td>
<td>Global maritime expert assessments</td>
</tr>
<tr>
<td>2. Shipyards (COT) - low carbon intensive shipyards</td>
<td>number of shipyards in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>3. Operational revenue from companies in maritime technology industry</td>
<td>operational revenue (from companies in the maritime technology industry) in USD (2018, 2019 and 2021)</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>4. Closest fleet</td>
<td>share of vessels at the closest classification society to the port</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>5. Market value of ships built at shipyards</td>
<td>number of shipyards producing ships in the world</td>
<td>Clarkson World Fleet Register</td>
</tr>
<tr>
<td>6. Number of newbuilding projects</td>
<td>number of newbuilding projects in each city</td>
<td>Bunker & Platts (Vard)</td>
</tr>
</tbody>
</table>
When assessing the importance of the world’s shipping centers, Athens, Singapore, and Tokyo take the top three spots in the total ranking of the leading shipping centers, with Shanghai and Hamburg following, to complete the top 5 placements.

The rankings (when compared to 2019) are in line with the recent growing sentiment and shift seen in the shipping sector, with more and more shipping operational activities moving to Asian maritime centers, resulting in traditional European shipping centers now populating the lower parts of the top 10 ranking. The exception is Athens, whose owners and managers have demonstrated high aversion to risk, stemming from political and COVID-19-related economic uncertainties, and now sit firmly in the 1st position, ousting industry experts’ long-time favorite, Singapore.

Globally, there has been a significant rise in the world’s fleet value in recent years, from USD 873 bn in 2016, to USD 951 bn in 2019, to about USD 1.2 tn in September 2021. The rise in value is mostly attributed to the better shipping economic outlook that dominant market segments, such as the dry bulk and container-ship segments, have been experiencing in 2021, compared to the previous decade. At a city level, the top 10 cities in terms of owned fleet value control more than USD 570 bn, which is approaching 50 percent of the world fleet’s value, illustrating the importance of these cities in the global world of shipping.

European cities have historically been dominant in terms of ownership, though this is gradually changing, as Asian shipowners have taken most of the fleet growth in the decade. Asian owners have increased their market share to 42% of the global fleet, up from 36% in 2012 (in terms of GGT), with Chinese owners clustered in Shanghai and Hong Kong facilitating most of this change. The European share of the world fleet, however, has only fallen from 45% to 43%, so the remaining shares have been captured from other continents.

Again, Athens has experienced a contrasting development as fleet ownership and ship management levels, in terms of tonnage, have increased by about 20% since 2019. The city's strengths lie in a large and strong ship owning community, with Greek shipowners having played a key role in the industry for decades and expected to remain influential in the future. Its maritime cluster also caters to this community, offering top-notch shipping services covering shipping operations, and technical and crew management while employing qualified local talent. However, it is still being perceived as primarily serving the local Greek shipping companies and less so international shipping entities, hence the experts have opted to give their vote of confidence to other shipping centers, predominantly Singapore and Shanghai.

Singapore’s strength lies, to a large extent, in its geographic location on the East-West trade lane and in proximity to populous markets, such as the Chinese and Indian ones, and the generally favorable macroeconomic climate. Its strong drive in digitalisation, as well as having key stakeholders in close proximity makes Singapore a global hub for shipping.”

– CARL SCHOU, CEO, WILHELMSEN SHIP MANAGEMENT
Asian production bases. Singapore is a key location for shipping, and an important center for commercial management. It is home to the second largest fleet in the world owned at city level and the second largest fleet managed from a city (both in terms of tonnage), and scores highly among experts on the subjective indicators, perceived as the leading shipping center to operate out of, and the prime choice for relocating shipping activities. Industry experts have also highlighted the presence of many foreign owners in the city, illustrating Singapore's global attractiveness.

Tokyo has been a leading global shipping center for decades, ranking 3rd in shipping overall in 2021. Tokyo-based owners have been increasingly taking up larger stakes in key growing shipping segments, for instance being the top owners of LNG carriers globally and one of the leading cities in terms of alternative fuel-capable tonnage ownership. They facilitate Japanese and global trade by chartering out many of their vessels on long-term contracts with established ship managers or large players in the manufacturing and energy sectors, ensuring stable sources for their earnings. Despite this, several factors such as high office operational costs have lessened Tokyo's attractiveness as a base for ship management, a sentiment that is also shared by the industry experts.

Shanghai has shown phenomenal growth in terms of its maritime activities in recent years, forming a cluster of Chinese owners and international managers that facilitate the bulk of the Chinese imports and exports, managing to edge out the competition from other shipping centers in the region, most notably Hong Kong. Global shipping organizations are taking notice, establishing regional headquarters, branches or other project companies in Shanghai, empowered by such mechanisms as the local pilot free trade zone, and the increased uptake of digitalization practices in shipping operations, to improve efficiencies and reduce associated costs. The city is home to the Shanghai Containerized Freight Index (SCFI). Also appealing to industry experts are the continuous efforts from local administrations poured into improving the city's modern shipping services, such as shipping finance, with vessel leasing quickly gaining traction from global shipowners, maritime arbitration, and other legal services.

Hamburg has been struggling to keep up with other shipping centers in recent years. The ship owning community had to face some unique challenges, the reason for this being that a portion of their fleet has been financed through the KG system, i.e. by single purpose companies with an asset manager (oftentimes related to a technical ship manager) and hundreds of small equity holders, who had little insight in and control over their vessel and its operation. Many of the KGs could not weather the storms of the global financial and shipping crisis and ultimately collapsed. Many capital holders were disincentivized to continue investing in shipping and moved on to other opportunities, which in turn stunted Hamburg’s ship owning tonnage growth. Regardless, due to their expertise, and proven track record, vessel management has remained in Hamburg for many vessels that changed hands to non-German owners, and the city remains a global hub for ship operations, hosting some of the most successful shipping companies, including Hapag-Lloyd in containerships, Oldendorff Carriers in the dry bulk segment and Bernhard Schulte Shipmanagement.

EXPERT ASSESSMENT

When considering the breakdown of the industry experts’ assessment for the shipping pillar, it can be seen from the figure below that experts perceive Singapore, London, Athens, Hong Kong, and Shanghai as the leading shipping centers in the near future. Shipping executives, furthermore, indicate that in case their company had to move their operational units, they would choose Singapore as the first option, followed by Shanghai and Hong Kong.

Unsurprisingly, Singapore’s strong holistic focus on the maritime sector and the establishment of a leading global maritime cluster grants the city the top position in both assessments, by a wide margin. The city is attractive due to its location, quality of life, and availability of a knowledgeable workforce. The Singapore government has for many years supported this segment both financially, by establishing a stable, pro-business environment, and by taking a consultative approach to the sector. It has retained a strong position for shipping activities, both commercially and operationally, and has also been an important meeting place for international shipowners. London may not be perceived as the leading maritime center anymore, in the eyes of the industry experts, but its long-established and extensive maritime cluster continues to attract some of the most successful shipping companies, as well as industry professionals globally. The experts believe that London’s standing as one of the top shipping centers will not be challenged in the near future, but high costs associated with office operations may disincentivize shipping companies from relocating their operational unit there, choosing a less costly destination instead, and thus ranking the city in the 5th place.

Chinese centers, such as Shanghai and Hong Kong, are coming up strong in the last decade, due to their proximity to the Chinese production centers, need to streamline shipping clusters to facilitate the ever-growing export volumes. Thus they secure positions in the top 5 as candidates for the leading shipping centers of the future.

They predominantly house Chinese owners and managers, but due to their tremendous growth, international players are starting to take notice and to consider establishing branches, ranking Shanghai 2nd, after Singapore, for choice of relocating shipping operations, and Hong Kong 4th. Athens places 3rd on the subjective ranking of future leading shipping centers, with Greece's shipping magnates having emerged largely unscathed from the country’s financial crisis and one of the shipping industry's largest downturns during the 2010s. The city has been developed as a principal ship owning and management location due to its historical position as one of the great maritime centers and its highly qualified maritime workforce. However, it is largely perceived as catering mainly to the numerous Greek shipowners/managers, and less so to international players, thus it does not score as high when viewed as a choice for relocation, ranking 9th overall.

Dubai has managed to acquire the 3rd place as an appealing location for relocating shipping operations, due to the growing trade needs of the Middle East Region and a strong governmental focus on providing incentives for attracting international investments. Overall, Dubai ranks 10th, just below some established European maritime centers. It is still not considered a principal shipping center by experts, but it is very quickly gathering traction among them as the dominant maritime cluster in the Middle East Region.

OBJECTIVE INDICATORS’ ASSESSMENT

The figures used in this chapter present information about the top 50 maritime cities globally. There might be some cases where cities not included in this sample objectively perform better on indicators included in this specific pillar. However, such cities do not perform well enough on an overall level to be a part of the list of top 50 maritime cities globally and are therefore excluded in this chapter.

To be recognized as a leading center for...
in the 1st position, both in terms of shipowners’ signed to the individual cities where their owners the entire world fleet and vessels were then as -
ferentials in different cities. Data was compiled for
tage of specialized local competence and cost dif-
SIZE OF SHIPOWNERS’ FLEET AND MAN -
lished status quo in shipping and become one of
Cities making up the rest of the top 10 have
corporate structure, the fact that in the city
they have to deal with the biggest piece of
Chinese ship management/ship ownership
in the future.
Lastly, Jakarta has managed to land in the 8th
place on this chart, up 3 places since 2019, de-
spite Indonesia being severely hampered by the
COVID-19 pandemic. Its GDP/population growth
levels, the regional trade volumes growth leading
to higher needs for shipping tonnage, coupled
with the low office overheads, formulates a mix
of favorable conditions for shipping activities.
VALUE OF CITY-CONTROLLED FLEET
Another means of benchmarking the cities is by
considering the value of the fleet owned from
different cities. This is opposed to the size of a fleet. Fleet
value offers a better reflection of its economic im-
portance. This evaluation is based on data from
Clarkson’s World Fleet Register with the estimated
value of the share of the fleet controlled from the
city.
The current state and economic outlook of the
underlying shipping segments play an important
role in measuring a vessel’s value, meaning that
if a fleet is largely concentrated in a specific
segment, then the fleet’s value will also largely
depend on said market’s state and outlook. For
example, cities in the Gulf Area, such as Dubai,
Abu Dhabi and Doha, possess a high ratio of oil
related shipping, so the major market’s state
greatly affects the value of the fleet in those cities.
Obviously, this phenomenon is weaker for cities
that characterize a variety of vessels in their owned
fleets.
The world’s total fleet value is concentrated in
Athens, Falmouth and in Asian centers, such as
Tokyo, Imabari and Shanghai, and the composi-
tion of the merchant fleet differs between them.
Athens may be best known for being home to a
large tanker fleet, but the city also has a sub-
stantial fleet within the bulk and gas carrying segments. Tokyo has a well-diversified fleet con-
sisting of bulkers, containerships, ro-ro vessels
and gas carriers. Hamburg is quite specialized
in container shipping, while Singapore has its
strength within tankers, bulkers, offshore and lines.
Athens and Tokyo have recently added quite a
few vessels to their arsenal, increasing their fleet
value by about 20% from 2019 to 2021, viewing
vessel ownership as a prime form of capital invest-
ment, and it comfortably in the top positions.
Hamburg’s large stake in containerships and dry
bulk vessels, coupled with the most robust markets;
booming state, have elevated the city to the 3rd
position in terms of total vessel value. Shanghai
houses the bulk Chinese-owned ocean-going fleet,
which has resulted in Asia being the largest shipowner in the world in terms of total
gross tonnage, whose aggressive tactics in ship-
acquisition and ship-building have contributed to
Shanghai taking the 4th place from Singapore, which
is now almost in a tie with Imabari for the 5th
position. Copenhagen is following in the next
to a large extent due to the world’s most
valuable shipping company, Maersk.
Cities making up the rest of the top 10 have
all witnessed an upward trend in terms of their
fleet’s total value since 2019, due to the afore-
mentioned favorable state of most shipping mar-
kets, but not many individual changes in their
respective positions relative to each other, have
occurred.
TOTAL ANNUAL TURNOVER OF SHIPCOMPANIES
The annual total turnover of shipping companies
located in each city can be an important indicator
of the local shipping community’s size and impor-
tance to the global shipping markets. It is impor-
tant to emphasize, however, that many shipping
companies prefer not to have equity traded pub-
licly or operate under tight regulations, meaning
that the numbers provided remain hidden from the public to maintain their competi-
tive edge. These facts, coupled with differences in
reporting methods and local legal requirements,
make measuring the financial results in each city
a challenging task.
The ranking on this indicator reveals a strong
corporate factor, where several businesses might
be grouped in one large corporation. Chinese
cities, such as Beijing and Shanghai, are good
equivalents. They showcase high turnover from
shipping activities, spread across a relatively small
number of companies (with COSCO the largest
corporation), mainly due to the booming state
of the containership market and the high global de-
mand for Chinese goods.
Copenhagen, London and Marseille also retain
high positions in total turnover, mainly due to the
presence of very large shipping corporations (AP
Moller-Maersk Group, BP Shipping, CMA COG
etc.), of which some are traded publicly on na-
tional or foreign stock markets, and their corpo-
rate reporting requirements provide a high level of
transparency.
Tokyo gets the 3rd position and Seoul is ranked 7th,
attacting owners and managers from all around
the world, servicing every segment of the ship-
ing industry, and the city owns much of its suc-
to the incentives provided by Singaporean
Regulations, the active role of MPA Singapore in
attracting shipping companies to the city. There
are far fewer shipping companies based in the
city compared to Rotterdam, Hamburg, Tokyo,
Imabari and Shanghai; but these are, for the most
part, large corporations, owning a diverse port-
folio of assets. Osaka and Tokyo have become
attractive locations for shipping operations in the
last decade, with offices being established pri-

cally on the strength of their services.

The number of shipping companies located in
a city may give a different perspective on the ship-
ing community than the value of the ships and
revenues of the companies. Figure 7 shows the
number of shipping companies with headquarters
each city, with Jakarta leading this indicator
with 233 shipping companies registered there.
Most of these are very small in size, operating small-regional vessels; service the needs of the
archipelago islands. Athens follows closely with
221 shipping companies, but again the majority
are predominantly family-owned small enterprises.

Obviously, this phenomenon is weaker for cities
located in the Gulf Area, such as Dubai,
the most major market is the Middle East
region, crude oil of oil product
ships.

ALTERNATIVE FUELS CAPABLE FLEET SIZE
In line with the recently adopted resolution to
reduce GHG emissions by 50% by 2050, some
shipping companies have started to install engines capable
of using alternative fuels on their newbuild
projects, such as LNG, LPG, or methanol. However,
significant barriers still exist on many levels for
different fuels – ranging from technical/natu-
ral behaviors, engine-related issues, bunkering terminals, ports, capital expenditures (for shipping,
operators including support from incen-
tives schemes) and regulatory status (from IMO,
Class, regional and national). Shippers must
maintain a balance in their decision to invest in
alternative fuels-capable vessels, where the
initial investment costs for new technologies
are high. To lower their investment risks, large
ship

shippers, such as Mitsui O.S.K., BAW Group
and Angelicexcous Group secure long-term deals,
 ranging from 5 to 15 years, with established char-
terers like BP and Total, and then undertake alter-
native fuels-capable newbuild projects, with
the vessels deployed under charter contracts.

From a city’s point of view, Athens and Tokyo
load comfortably in terms of alternative fuel-
capable tonnage, owning about 1.3 and 1.2
Million GT respectively. With less than half of the alterna-
tive fuel-capable tonnage compared to Athens or
Tokyo, shipping companies in Osaka, London and Marseille
nevertheless demonstrate an increased rate of interest in these
areas. In the rest of the top Asian shipping
centers, such as Seoul, Shanghai and Singapore,
local owners have not yet invested significantly in environmentally friendly tonnage compares to
European cities.

“…To increase its attractiveness for mar-
time companies, Hong Kong should
improve transparency, maintain the
legal system and focus on fairness,”

Manager of a shipping company, Hong

Kong
Overall, New York is ranked first in the world for maritime finance and law, followed by London, Tokyo, Oslo and Paris. New York is home to the world’s largest stock exchange for maritime listings and plays a key role in financing maritime operations. It is widely recognized for its maritime law-related and marine insurance services. It is home to world-leading institutions, such as Lloyd’s for insurance, and English law is the most widely applied in shipping disputes.

Tokyo is the center of gravity for the Japanese shipping community with several banks that are strong in ship finance and the presence of a strong Export Credit Agency (ECA). Its insurance companies (covering for cargo, H&M, P&I) generate the 2nd largest insurance premiums and many of its maritime companies are stock listed. Tokyo ranks 3rd overall but does not perform well on legal indicators, since its law firms are less recognized on a global scale.

Oslo’s strong position in maritime finance is mainly due to Norway’s strong historical position in the maritime industry and the development of world leading financial services that have supported this industry. Oslo is home to the world’s two leading shipping banks and has a strong position with a maritime focused stock exchange and leading insurance and brokering entities.

Paris, an inland city without a significant port and a shipping community, ranks 5th on the Maritime Finance & Law pillar, due to being home to the headquarters of leading ship financing banks such as BNP Paribas, Credit Agricole and Société Générale, and its strength on insurance.

Recently, Asian (particularly Chinese) banks have emerged in ship finance and as of today, three out of the global top ten banks are now Chinese (e.g., Bank of China, ICBC, China Exim). When assessing top shipping portfolios by banks headquartered in various cities across the world, Beijing is the top performer.

According to the industry experts, the top 5 cities for maritime finance are London, Singapore, New York, Oslo and Hong Kong. Paris and Tokyo, which score high on the objective indicators, are not acknowledged among the top cities by the industry experts; instead, they rank Singapore as the second most important city, even though the city is in the 8th position on the objective criteria.

"In the years ahead, we will see continued and accelerating focus on ESG: companies that wish to thrive must be seen as contributing meaningfully to the advancement of the maritime ESG agenda."

- SHIP FINANCE MANAGER, OSLO
EXPERT ASSESSMENT

Maritime activities tie up large amounts of capital. The industry is characterized by cyclical markets. Hence, access to capital will determine the long-term success of many companies. Companies raise capital with debt, by taking on bank loans or issuing bonds, or with equity, by issuing shares or receiving private investment. London, Singapore, New York and Oslo remain the clear leaders within this field, according to the industry experts, due to their strong positions in banking, law, insurance and brokering services. The top 5 includes the same cities as the 2019 assessment, while Tokyo continues to rise and is now ranked 7th, by the experts and 3rd on the pillar as a whole. Similarly, Paris, which is 15th in the expert assessment, makes it to our overall top 5. Judging by this it appears the experts prioritize a strong stock exchange over the bank loan indicators. In addition, the deals and transactions often take place where the large maritime companies are located, not necessarily in the cities of the banks and other financial providers.

OBJECTIVE INDICATORS’ ASSESSMENT

The figures used in this chapter provide information about the top 50 maritime cities globally. Hence, there may be some cases where cities not included in this sample objectively perform better on indicators included in this specific pillar. However, such cities do not perform well enough on an overall level to be a part of the list of top 50 maritime cities globally and are therefore excluded in this chapter.

Eight objective indicators were chosen to benchmark the leading maritime financial and legal centers. These indicators measure the volume of legal and financial expertise and as such number of leading legal experts in shipping law (SMF) to develop the city’s own Ship Sale Form (SMF) to develop the city’s own Ship Sale Form (SMF) to develop the city’s own Ship Sale Form (SMF) to develop the city’s own Ship Sale Form (SMF) to develop the city’s own Ship Sale Form (SMF) to develop the city’s own Ship Sale Form (SMF) to develop the city’s own Ship Sale Form (SMF) to develop the city’s own Ship Sale Form (SMF) to develop the city’s own Ship Sale Form (SMF) to develop the city’s own Ship Sale Form (SMF) to develop the city’s own Ship Sale Form (SMF). To assess the strength of cities when it comes to maritime law, the use of indicators such as the number of leading legal experts in shipping law and the number of maritime law firms give an indication of the city’s importance for financial and legal transactions. Strong knowledge centers with many experts also attract more business to a city. Who’s Who Legal, which identifies the foremost legal practitioners in business law based upon comprehensive and independent research, shows that London has the largest number of leading legal experts (16) in maritime law. Behind London are New York, Sydney, Rio de Janeiro and Copenhagen. When considering the number of maritime law firms operating in each city, the situation changes, with 153 firms in 2019, London is followed closely by New York, Paris, Hamburg and Hong Kong, with an average of 30 such firms.

This shows that with English law widely used in shipping disputes, London has sealed its position as the best location to resolve maritime disputes and for international maritime arbitrations. In that aspect, Singapore and Hong Kong could be London’s strongest competitors. In Singapore, the efforts of the Singapore Maritime Foundation (SMF) to develop the city’s own Ship Sale Form and SMF’s involvement in the development of a玩 a key role in the financing process, New York is the most important center in the world for this kind of financing, followed by Oslo, Tokyo and Paris. Citi, Bank of America and Merrill Lynch have their headquarters in New York, and while they are not among the top 10 banks worldwide for their shipping loan portfolios, they do lead as MLA.

However, in general, traditional European banks are gradually cutting back on ship financing, with the exception of French banks. With owners increasingly looking for alternative ways to finance their fleet renewal and investment programs, Chinese lenders, leasing institutions and export-credit agencies are quickly filling a critical void left by the retreat of European commercial banks, especially for newbuilding orders. Prior to the shipping crisis, European banks dominated in the global shipping finance sector. Five out of the top ten were in Germany, two in Scandinavia, one in the UK, and one in France, while only one was based in Asia. However, with the crisis many traditional lenders experienced heavy hits on their P&L, and were forced to write-off, reduce or even exit their shipping portfolios. Due to the shipping crisis, Asian (particularly Chinese) banks have emerged in ship finance and as of today, three of the top ten banks are now Chinese (e.g., Bank of China, ICBC, China Exim). When assessing top shipping portfolios by banks headquartered in various cities across the world, Beijing is the top performer, followed by Paris and Tokyo.

LEGAL CENTERS

LEADING FINANCIAL CITIES

Maritime cities have been benchmarked based on the market value and the number of listed maritime companies on their local stock exchanges. New York is by far the largest equity market in the world for maritime stocks, both in number of tradable stocks and market capitalization of the companies. Compared to the 2019 results, New York and Oslo have maintained their first and second position when it comes to the number of tradable stocks. There is a clear trend towards de-listing, however, as all the highest ranked cities from our last assessment have suffered large drops in the number of listed maritime companies. In terms of market capitalization of maritime stocks, New York has maintained its leading position, even though there was a reduction in values compared to 2019. Hong Kong and Mumbai are the biggest losers from the last assessment, with the former reaching the 2nd rank, while the latter appears 5th on the list after not featuring last time. Rounding out the top 5 are Shanghai and Busan. In Shanghai, two major companies dominate the value of maritime stocks. China Shipping Building Industry combined with Shanghai International Port Group has a market capitalization of USD 23.3bn.

When considering the trading volume of bonds, IPO and follow-ons from each city’s stock exchange during the period 2019 to 2021, New York is leading, followed by Oslo, Singapore, Taipei and Rotterdam. New York as the leader traded more than sixfold the volume of Oslo, which in turn traded more than double that of Singapore.

BANKS – SHIP FINANCING

Fig. 10 – Market value and number of listed maritime companies on local stock exchanges

Source: Dealogic & Bloomberg & Loan Pricing Corporation (2021)

Fig. 11 – IPO/Bonds/Follow-ons during the period 2019-2021

Source: Petrofin Research (2021)

Fig. 12 – Top 40 shipping portfolios by banks

Source: Dealogic & Bloomberg & Loan Pricing Corporation (2021)

Fig. 13 – Value of maritime syndicate mandated loans

Source: Dealogic & Bloomberg & Loan Pricing Corporation (2021)
modern Charter Party Form together with BIMCO and Association of Shipbrokers and Agents (ASBA) incorporating Singapore as the location of arbitration (in addition to New York and London), reflects the growing importance of Singapore as a leading international maritime legal center. The strength of both Singapore and Hong Kong seems to be related to their proximity to commercial operations and access to key industry players, with Hong Kong positioned as a gateway to mainland China.

MARINE INSURANCE

Marine insurance was the earliest well-developed kind of insurance, with origins in the Greek and Roman maritime loan. Marine insurance in the modern world is a prerequisite for a functioning shipping market. Large shipping companies transport cargo worth hundreds of millions of dollars every day on large ships that themselves may be as valuable as their cargo. To reduce risk involved in such operations, shipping companies insure both the cargo and the hull of the ship.

To assess a city’s position in terms of its reputation as a marketplace for insurance coverage and its marine insurance services, several factors were considered such as concentration of P&I clubs and the collected insurance premium at city level, and the presence of commercial insurances covering cargo, hull and machinery (H&M). This assessment shows that London, home to the first marine insurance company in the early 18th century with Lloyd’s of London and complemented by the International Underwriting Association (IUA), continues to be the unrivalled city for marine insurance with more than 50% of International Group (IG) of P&I clubs covered gross tonnage served by UK-based clubs, over 30% of global cargo and H&M premium collected by UK-headquartered insurance companies and the highest number of representation offices of all clusters. Other European cities with a significant role in marine insurance are Paris, Genova and Rotterdam.

In Asia, Tokyo and Singapore have maintained their positions within the top 5, their focus being mainly on domestic clients. Singapore’s 3rd position on this indicator is due to its efforts to increase its marine insurance activities by introducing its own Singapore War Risk Mutual supported by its industry association (Singapore Shipping Association, SSA). In China, Shanghai and Beijing have swapped places with the latter taking the former’s place in the top 5, while Shanghai has dropped to 16th. This is most likely due to a change in reporting standards which has moved some of the insurance premiums produced in Shanghai over to Beijing.
Benchmarking of cities based on objective indicators for their standing on maritime technology is challenging. Ideally, measures of R&D, education and innovation should be used. However, it is hard to find global data sources at city-level that compare the magnitude, relevance and quality of maritime research, education and innovation. Such factors are more suited to subjective assessments by maritime experts. Still, seven objective indicators, revealing different dimensions of maritime technology are used in our ranking: the size of fleet (CGT) delivered by shipyards, including a separate indicator on low- or zero-carbon fuels-capable tonnage; the share of world fleet by classification societies; market value of ships built at shipyards; the number of patents by maritime companies based in a city as well as the number of maritime education institutions found there.

Singapore is ranked as the world leading city when it comes to maritime technology, followed by Oslo, Busan, London, and Shanghai. Tokyo, Hamburg, and Rotterdam are now moving down in the maritime technology ranking.

While not known for its shipbuilding capabilities, Singapore nevertheless shows a lot of promise when it comes to setting up a framework for maritime R&D projects, as the government is willing to provide support schemes to maritime companies, and especially maritime technology start-ups, that will increase their ease of access to markets, funding, and talent. One such program is the Pier71, set up by the Singapore MPA, which strives to create an international ecosystem of maritime technology providers, investors and clients. It also includes educational institutions, such as the National University of Singapore, providing experts that can assist in the development and trial phases of innovative projects. The city has set itself the bold target of housing 150 startup companies in the maritime technology sector, and being dubbed the Silicon Valley of marine technology, by 2025.

Oslo, ranked as the world’s 2nd leading city overall, is considered one of the prime hotspots for maritime technology and innovation. One of the most important technology companies in the Norwegian cluster is DNV with its head office in Oslo. DNV is one of the world’s leading maritime R&D companies, investing 5% of its revenues into new technology development, as well as the world’s largest ship classification society according to Lloyd’s List. The Oslo region also hosts world leading equipment producers, like Kongsberg Maritime, and various specialized tech-companies, like Cognite.

In third position is Busan, thanks to its big fleet size (CGT) delivered by its shipyards, the market value of the ships built there, as well as leading in the number of patents produced by the maritime firms headquartered in the city. Busan is the center for the South Korean shipbuilding cluster where the major shipyards focus on offshore units and high value-added “mega-ships” such as container ships, VLCCs.

“I am delighted to witness the traction of tech companies coming to Singapore and fostering an ecosystem of tech immersion and growth.”

– STEEN LUND, CEO, RIGHTSHIP
In green transition, cities such as Oslo and Copenhagen are on the forefront, with Singapore and Tokyo the leading lights in Asia. There have been many MOUs signed between Norway, Denmark, and Singapore. With the growing interest in Singapore about the green transition, the gap between Europe and Singapore is narrowing, which is very pleasing. —ESBEN POULSSON, CHAIRMAN, INTERNATIONAL CHAMBER OF SHIPPING (ICS)

Shanghai closes the top 5 list, driven by the presence of its modern shipyards with major newbuild projects gravitating towards them. These shipyards have made phenomenal leaps in terms of quality of production in a relatively short time, while also retaining a high degree of competitiveness due to the economic incentives offered by the Chinese administrations such as extended financing to 80-90% of a newbuild project’s total cost if a shipowner chooses a Chinese shipyard.

London scores greatly from its prestigious maritime education institutions and for being the home of the oldest classification society with a history from 1760, Lloyd’s Register.

Shanghai closes the top 5 list, driven by the presence of its modern shipyards with major newbuild projects gravitating towards them. These shipyards have made monumental leaps in terms of quality of production in a relatively short time, while also retaining a high degree of competitiveness due to the economic incentives offered by the Chinese administrations such as extended financing to 80-90% of a newbuild project’s total cost if a shipowner chooses a Chinese shipyard.

In this year’s report, industry experts have been asked to rank cities on a variety of indicators where the focus has been on their status as leading maritime technology centers, their efforts in driving forward the maritime digital and green transformations, and their attractiveness for relocating maritime R&D activities. It seems that the maritime industry is on the verge of important changes driven by a sense of urgency in terms of the climate crisis and increased efforts to cut emissions by regulatory bodies. While the majority of experts point out the financing of the green transformation as an obstacle, a significant share of experts, 40%, mention availability of alternative fuels and technology as a barrier to green transformation. Many experts emphasize that the majority of the green technologies available has not reached commercial maturity, which is also the biggest challenge when it comes to financing the green transition. There is generally a demand for specialized equipment in the maritime industry to cater for improved efficiency under sea conditions and to address new operational limitations to comply with recent environmental regulations. Such regulations create niche markets for maritime equipment, from maritized long-life batteries and new designs of engines running on unconventional marine fuels or other solutions for compliance with the upcoming IMO regulations. The experts have also pinpointed the cities that produce world-class maritime IT services and IT-based products, as a city willing to provide advanced digital infrastructure and an environment that is conducive to innovation will generally have a strong competitive edge. When it comes to cities being considered for relocating R&D activities, factors such as local labor costs, quality of life, the presence of advanced educational institutions, and the level of cooperation and information-sharing between different stakeholders are considered by the experts’ assessment.

The figures used in this chapter present information about the top 50 maritime cities globally. Hence, there may be some cases where cities not included in this sample objectively perform better on indicators included in this specific pillar. However, such cities do not perform well enough on an overall level to be a part of the list of top 50 maritime cities globally and are therefore excluded in the following chapter.

EXPERT ASSESSMENT

Singapore and Oslo are consistently in the top 2 places for all 4 indicators, both standing out as the main centers for digital and “green” technology. Singapore’s top ranks are mainly due to the city being a marketplace where maritime technology producers and clients usually meet, a place where all major marine equipment players are operating and where a high level of sophistication and competence exists locally to support high-value newbuilding of maritime and offshore assets, conversion projects, fabrication of process modules or to perform complex repair activities, even if the actual production procedures are not generally located within the bounds of Singapore. Furthermore, the Maritime and Port Authority of Singapore (MPA) has put tremendous focus on R&D and advanced maritime technology as one of their core pillars in promoting Singapore as a global maritime hub. The city seeks close cooperation between publicly funded institutions and private companies, with digital innovation and growth of marine tech entrepreneurship in mind. A key example is the establishment of the Singapore Maritime DataHub to serve as a collaborative platform for technology companies, start-ups and maritime stakeholders to co-develop innovative and data-driven maritime solutions and promote collaboration with organizations such as the Research Council of Norway (RCN) in Oslo, to focus on Maritime Digitalization and Autonomous Vessels and Systems.

Oslo houses top-notch R&D organizations and is home to a highly advanced maritime equipment industry, considered to be at the top in terms of solutions offered in the field of environmentally sustainable technologies. Kongsberg Maritime is the world’s leading producer of digital products and solutions to more than 100,000 ships around the globe, including positioning systems, bridge systems and control centers. Oslo is also considered leading in the green transformation of the maritime industry. Almost four out of ten maritime experts point to Oslo as the leading city in the green transformation. It is also interesting to observe that Copenhagen scores highly both on green and digital transformation.

Together with Hamburg, Rotterdam, and Singapore, Oslo has a long tradition of producing maritime technology solutions by focusing on the development and delivery of innovative equipment. All these cities are recognized as the home of excellent educational centers and main beneficiaries of advanced education clusters in their respective nations, which make the sourcing of competent researchers an easier task, thus ranking them highly in the top 5 for all our subjective indicators.

Shanghai is ranked among the top 4 on the subjective indicators, except for green transformation. It is regarded as a city of world-class maritime IT, driven by governmental focus on streamlining operations for the shipping industry and port infrastructure. The presence of a Free Trade Zone also increases the city’s appeal as a candidate for relocating R&D activities.

OBJECTIVE INDICATORS’ ASSESSMENT

Cities are ranked according to their respective scores in each of the four pillars, and are placed on a map to show their positions.

SHIPBUILDING

At shipyards, the demands from design and industry standards are put into action. Modern ships are a mosaic of parts from numerous sub-contractors that become high-tech industrial assets for their owners. Assembling ships is a technologically and logistically demanding operation. Some shipyards build the entire ship in

source: Menon Economics & DNV (2021)
one location. For more technologically advanced ships, it is common for hull construction to occur in low-cost countries before outfitting is done in countries with more highly skilled and costly labor. Shipyards are often surrounded by maritime equipment companies that supply them. In the last two decades, Asian centers have been rapidly growing in strength, so that nowadays they are responsible for more than 92% of the global build share. Focusing on the shipbuilding activities in 2019–2021, South Korea, China, and Japan have been the main beneficiaries of this trend, gathering around 88% of the global build share, cumulatively. European centers have been struggling to keep up with the competition and have largely shifted their focus towards niche and specialized markets, such as cruise ships, complex offshore vessels, and navy ships.

When considering only the currently active shipyards and the 50 cities for which the overall benchmarking is being done, a ranking based on both delivered CGT in 2019, 2020 and 2021 and current orderbook from these yards shows that Busan is by far the leading city in this field. The region surrounding Busan is the center for the South Korean shipbuilding cluster. The major shipyards focus on offshore units and high-value-added “mega-ships” such as container ships, VLCCs and LNG tankers. The total CGT output and CGT on order with Busan’s shipyards (DSME, Kangeum Corp & HH) is almost three times higher than in Singapore and nearly five times higher than in Japanese shipyards (such as Imabari and Sumidagawa yards). Busan is the biggest beneficiary from the spike in global orders in 2021 compared to the previous years, and accounts for a larger share of the global order book in terms of CGT. Shipyards in Busan are currently the major site to build container vessels and make up 45% of the total shipbuilding production in South Korea.

Singapore is placed second, being the most advanced maritime manufacturing center in Asia. Total CGT delivered by the local shipyards for the same period is lower than in Busan but twice as high as for Imabari. Overall, Chinese shipyards managed to outperform South Korea for the first time in the container ship segment in terms of CGT built since 2019. Imabari is primarily concentrating on the dry bulk, tanker and general cargo segments. Imabari’s share of CGT delivered and on order accounts for 8 million CGT which is fifteen times higher than Singapore, even though Japanese yards have been steadily losing ground to South Korean and Chinese ones in terms of CGT output and contracting volumes.

Making up the remainder of the top 10 are the Chinese yards in Guangzhou, Ningbo, Dalian, and Qingdao, which are not yet considered as technologically advanced as the South Korean and Shanghai shipyards. The main vessel types leaving these yards have been bulkers, fishing vessels, tugs, general cargo ships and products tankers. Rotterdam and Genoa are the only cities outside of Asia that reached the top 10 in this chart, having chosen to focus on and developing a good reputation for the passenger cruise and luxury yacht segments.

MARKET VALUE OF SHIPS BUILT AT SHIPYARDS

The market value of the ships built is not only a matter of size, but also the complexity of the equipment and machinery. When considering the purchasing price of ships built the last three years, the top three performers are Busan, followed by Shanghai and Imabari. Busan’s shipyards have manufactured vessels at a cumulative price of USD 18.9 billion, greatly surpassing every other city, by at least a five times margin. In the top three, Busan is the only yard in dry bulk, container ships, and gas carriers. Availability of high-quality labor force, in-house design capabilities, and world-class engineering services makes the city a leading hub for this indicator. Ships built at yards in Shanghai and Imabari were valued at USD 3.9 billion for each city, whilst yards in Tokyo and the rest of the Chinese centers have been producing vessels with total values in the range of 1 to 2 billion USD. It is worth noting that Singapore scores significantly higher on market value than on CGT, reflecting that Singaporean yards build semi-convertible, FPSO conversions and other advanced units. The total value of ships built in Singapore and Oslo, our top cities for this pillar, have not managed to surpass the 1 billion USD mark for any of these cities.

SHIPBUILDING - ALTERNATIVE FUELS CAPABLE VESSELS

As sustainability becomes a greater priority in the maritime industry, shipyards start to capitalize on design and manufacturing innovations to produce low-carbon-emission ships. As shipyards worldwide look at their strategies on how to improve their competitiveness and try to find an innovative approach that will differentiate them from competitors, Busan’s shipbuilders are already accelerating their efforts, viewing this trend as a new business opportunity. At the national level, South Korea comes close to the invention billions of USD into eco-friendly and smart ship technologies, managing to gain ground against China and Japan.

Busan is a stellar performer scoring highest on this indicator. A significant share of all low carbon ships, measured by GGT, that have been built in the last three years or are in orderbooks originates from Busan. Korean shipyards benefit from the ongoing sound policies implemented by the government in response to the decarbonization push. The Korean government launched a USD 144 billion package called the “Korean New Deal”, consisting of environmental reforms targeting green technologies, including an overarching policy aimed at strengthening employment in the shipbuilding sector. Shanghai ranks second, with total GT delivered by local shipyards for its current fleet and/or orderbook being four times lower than in Busan. Overall, aggregated GT with five Chinese yards (such as Shanghai, Guangzhou, Dalian, Qingdao and Xiamen) is three times lower than in Busan alone.

Japanese shipyards, having the third largest newbuilding capacity, have not yet committed to building alternative-fuels capable tonnage on a large scale. Saint Petersburg’s 4th place is due to its production of nuclear fueled units.

OPERATING REVENUE OF COMPANIES IN THE MARITIME TECHNOLOGY SECTOR

The indicator, operating revenues of maritime technology companies, focuses on the headquarter function of the corporations, where strategic decisions of investments, technological direction and geographical expansion are executed. Hence, revenues are aggregated and distributed to the headquarters of the shipyard companies, so yards with revenues from drybulk and retrofitting activities will also be placed under consideration in this section.

Shipyards headquartered in Beijing have the highest operating revenue compared to other top 15 cities, due to the fact that state-owned shipbuilding entities are grouped within the corporate “China Shipbuilding Industry Corporation”, which has its headquarters in Beijing. Similarly, the results from Shanghai, which ends up in 3rd place, are driven by state-owned “China State Shipbuilding Corporation Limited” with its headquarters located in Shanghai.

Korean cities Busan and Seoul end up in 2nd and 4th place respectively for this indicator. In total, the two Korean cities contribute the bulk of the maritime yard activities in South Korea, with the industry being vital to the entire nation economic system. Companies that lead the results are “Daewoo Shipbuilding and Marine Engineering” for Busan, and “Korea Shipbuilding and Offshore Engineering” for Seoul. European centers, in general, fare better in this metric, but their high costs associated with labor and material sourcing make them less attractive to vessel operators.

CLASSIFICATION SOCIETIES

A classification society is a non-governmental organization that establishes and maintains the technical standards for ship and offshore equipment. All classification societies, and especially the members of IACS (International Association of Classification Societies), have a strong focus on R&D and on supporting the environment and safety at sea. They certify technological changes in constructions and play a vital role in quality assurance in the maritime industry. Most societies have an international presence as this has become a prerequisite for serving the global shipping industry.

When ranking the classification societies in terms of the size of their classed fleets, DNV, formed through the merger between Norway’s DNV and Germany’s Germanischer Lloyd and with its headquarter based in Oslo, takes the first place and thus pushes Oslo ahead in the city ranking. Tokyo with ClassNK takes the second position, followed by Houston which does well on this object and gives much due to the presence of American Bureau of Shipping (ABS). Houston is also one of the leading centers of the world for offshore oil and gas activities, and the world’s leading center for offshore equipment. Lloyd’s Register, the oldest classification society with a history from 1760, headquartered in London, in terms of CGT delivered and on orderbook. Source: Clarksons Research & Menon Economics (2021)
Patent applications and registrations in the maritime industry are growing, especially in the field of ship design and equipment. The overall numbers are consistently going up throughout the last decade, indicating a rise in innovation in ship design and equipment. Recent trends show that several companies are using patented robotic technology for ship building and ship repair, while also exploring avenues like 3D-scanning, 3D-printing, virtual and augmented reality applications. Furthermore, there is a substantial increase in patent filings, aimed at providing solutions for environmentally friendly vessels.

The patents analyzed for this indicator have been accumulated over several years and are a good measure of the technological sophistication and innovation within a company and an industry.

At present, Seoul holds the largest number of active maritime patents owned by firms head-quartered in the city. The highest portion of them belongs to Samsung Heavy Industries. Still within South Korea’s bounds, Busan ranks 5th on this indicator, with Daewoo Shipbuilding & Marine Engineering Co. Ltd. Remaining patents are mostly held by Nippon Yusen Kabushiki Kaisha connected to sea and coastal freight water transport.

London, Paris, Houston, and Oslo are considered top centers for innovation and research in new technologies, for a variety of fields, so maritime companies have greatly been benefitted from the trickle-down knowledge phenomenon, and the availability of competent research personnel, allowing the cities to secure positions in the top 10 field.

“The green transformation of the maritime industry is the most important change in the years ahead. However, the main obstacle will be lack of renewable energy sources.”

– Academic scholar, Singapore

MARITIME EDUCATION INSTITUTIONS

The number of maritime education institutions found in a city, including dedicated academies and universities offering courses catered to the maritime sector, is a good indicator to assess a city’s culture of learning and the level of competence of its graduates. From this, maritime companies can greatly benefit by sourcing skilled local maritime personnel.

When considering the number of maritime educational institutions, London is the leading city in this indicator, being home to prestigious maritime academies such as Cass Business School and London Shipping Law Centre. Rotterdam places second, with the maritime education offered in the city having a strong global reputation for excellence, and a variety/specialization of different courses available.

Athens and Hamburg are equally sharing the 3rd position, both cities have 13 maritime related institutions and training facilities, whilst Singapore holds the 4th position, where the Bachelor and Master in Maritime Studies degree programs offered by NTU have been a significant source of the maritime talent pipeline for more than a decade.
PORTS AND LOGISTICS SERVICES

SUMMARY

1 2 3 4 5

SHANGHAI ROTTERDAM SINGAPORE HONG KONG GUANGZHOU

Overall, Shanghai ranks first for the port and logistics services due to its high weighted average score on various indicators – namely port volume, size of port operator and the PLSCI. Shanghai is the most well-connected port on the PLSCI scale, with 265 regular liner shipping services from and to its port, with an average size of 20,182 TEU for containerships deployed by scheduled service (UNCTAD 2019).

Rotterdam is in the 2nd position of leading port cities, followed by Singapore, Hong Kong, and Guangzhou. Whilst the world’s largest ports in terms of container volume handled are found in Asia at Guangzhou, Shanghai, and Singapore, Rotterdam’s strength on the ranking assessment is primarily due to its score for the size of the LNG bunker vessels deployed in that city. Rotterdam also has the largest port in Europe, with the 3rd largest port operator in the world. Its diverse port with well-established links to the European continent is supported by the expert assessment.

The port remains at the forefront for its automation and innovation efforts to leverage new technology that will complement its core port activities. Rotterdam Maasvlakte II terminal, opened in 2015, is the world’s most advanced fully automated terminal with 80% of crane movements automated and remaining manual operations performed remotely. In July 2021, the port of Rotterdam installed the world’s first 3D-printed steel bollards, an outcome of its infrastructure innovation program. It is now set to investigate 3D-printing for hydraulic engineering, with on-site repairs for nautical objects.

Whilst Singapore is still considered as having the best port and logistics services by global experts, its overall ranking for this pillar puts it now in 3rd position. Strategically located on the East-West trade lane, Singapore boasts a connectivity to 600 ports in 123 countries. It also maintains its competitiveness with its 20% port dues concessions for container ships unloading in its port, and 25% concessions on its Green Port Program for ships using abatement technology, clean fuel or LNG during their port stay. Like Rotterdam, Singapore caters for ship-to-ship LNG bunkering and is currently developing its container terminal at Tuas Port which will become the world’s largest fully automated terminal with a capacity of 65M TEU.

In 4th position is Hong Kong, largely thanks to its high score on the indicator for size of port operators headquartered in the city. With Hutchison Ports and China Merchants Ports based in Hong Kong, Hong Kong is thus home to two giant port operators controlling a 14.7% share of the world container throughput in 2019 from their operations in an average of 60 ports in 26 countries.

Guangzhou holds the 5th rank for the ports and logistics pillar, due to its highest score on the port volume indicator. Guangzhou is not yet offering LNG fuel but plans to build eight LNG bunkering stations for main navigation channels by 2022.
EXPERT ASSESSMENT

The increasing size of modern cargo ships and in- creasingly sophisticated containers have made ports be come larger and more automated. All around the world, ports are constantly upgraded and mod ernized to lower the cost of transportation and be more competitive. The shipping industry’s ability to deliver reliable logistics services at a low cost is a prerequisite in the modern world economy. Many companies rely on supply chains that stretch over vast distances, even continents. It is important for cities and countries to use them as hubs for carrying out complex, highly specialized logistical services.

For the last 6 years, the experts’ assessment on the world’s leading centers for ports and logistics services has remained unchanged towards Singapore and Rotterdam. Global experts have a clear preference for Singapore, one of the world’s busiest ports, with the benefit of proximity to the Asian market, ease of doing business, excellent connec tivity, and long history as a trading hub, combined with the city’s highly efficient port. While Rotterdam is still the second choice of global experts as the most important center for port and logistics services, it is now almost in a tie with Shanghai. Rotterdam as the largest port in Europe has the capability to handle the largest container vessels. From the city, goods are trans ported either by smaller ships or trucks by the railway that is closely linked to the rest of Europe. Rotterdam’s advantages include great connectivity, a business-friendly maritime envi ronment, stable political environment, favorable tax legislation and proximity to major ports.

Dubai is ranked highly by the experts. Dubai is a regional maritime center that focuses on increasing its presence in the industry. Currently Dubai’s status as an important logistics hub and, to a certain degree, its pro-business envi ronment are its strengths as a city for maritime business operations.

Of the top 5 pillar-specific cities, Guangzhou is ranked 8th by global experts, after Hamburg, Dubai and Los Angeles.

OBJECTIVE INDICATORS’ ASSESSMENT

The figures used in this chapter present informa tion about the top 50 maritime cities globally. Hence, there may be some cases where cities not included in this sample objectively perform better on indicators included in this specific pillar. However, such cities do not perform well enough on an overall level to be a part of the list of the top 50 maritime cities globally and are therefore excluded in the following chapter.

PORT VOLUME

Port cities are at the frontline of globalization, with approximately 90% of external trade volume transported by ship, loaded and unloaded at ports. A study by the OECD concluded that well-run ports produce many economic benefits such as having a lower cost of trade, increasing value creation, job creation and attracting related mari time services. To get the best economic benefit from port operations, port cities must facilitate an increase in the maritime service offering and take advantage of possible spill-over effects for indus trial development.

The world’s largest ports in terms of container volume (TEU) handled are still found in Asia at Guangzhou, Shanghai, and Singapore, despite the COVID-19 pandemic. While the Port in Shanghai plays a key role in supporting the manufacturing industry in the larger region, Singapore and Dubai are more important as transship ment ports. All if Chinese ports were considered (some of which are not within the 5 top cities in this study), the impor tance of China as a center for world trade would be even clearer. Seven of the world’s ten top container ports are found in China. In recent years, Hong Kong’s position as a gateway to the world’s manufacturing sector has been challenged by the phenomenal growth of nearby Shanghai and Guangzhou, as well as Shanghai, leading to a reduction in Hong Kong’s market share. Singapore maintains its competitiveness with its efficiency in container handling, and the key to the high growth Southeast Asia economies.

Of the top 5 pillar-specific cities, Rotterdam has the largest port in container handling after eight Asian ports and Los Angeles port. It is the largest cargo port in Europe with an extensive distribu tion system (railroads/waterways), offering port dues discounts (transshipment, cargo-specific, Environmental Ship Index, Green Award) and the Incentive Scheme for Climate-Friendly Shipping to support the shipping industry to impact cargo trade through its port.

Dubai dropped on this indicator, losing its top 10 status with it now ranked 11th as opposed to its previous 7th position. The main reason is that Abu Dhabi has now treated as a separate maritime city in the LMC report. Abu Dhabi has state-of the-art port infrastructure for different cargo types, with its container operations handled by long-term concession agreements with container shipping giants (MSC, COSCO, CMA CGM). Dubai is still the largest port in container handling in the Middle East region, playing a role as a transit hub strategically located between Europe and Asia. It currently is the only major Middle Eastern port not to be burdened with major infrastructures (whether terminal stalls or tenancy). Its strategic location for transship ment and free zone have meant that Iner-at- filikated shipping has not been deemed necessary (so far). However, regional competition is growing for port transshipment, with Port of Salalah offering lower transshipment time on the main East- West shipping lane.

SIZE OF PORT OPERATORS

To strengthen their position in a competitive world, the largest and best port operators branch out to operate new ports and terminals. The “Top 4 Port Operators” control 50% of global terminal operations. The largest port operator handled 110 million ton of cargo in 2020. The ranking for Figure 28 shows the leading cities which are home to the biggest port operators based on the total container volume handled at a global level.

No significant changes have happened since the 2019 edition of this report, with Hong Kong still in the leading position thanks to Hutchison Ports and China Merchants Ports. COSCO, the largest port operator, operating 100 ports in 63 coun tries and owning 13.7% of the world throughput (Dryreu 2019), contributes to Singapore’s second place on the list. In 3rd position, Singapore has now replaced Rotterdam on this indicator. Singapore is home to PSA International, one of the world’s leading port operators, operating 100 ports in 63 countries.

Dubai’s share of market has increased with the phenomenal growth of nearby Shenzhen and Hong Kong. Dubai, Singapore and Hong Kong are more important as transshipment ports. While Tokyo is no longer in the top 5, it remains a major port in the world’s shipping lanes.

LNG AVAILABLE AT PORTS

With the IMO’s ambitious goal of reducing GHG emissions from international shipping by 50% by 2050 and phase them out before 2021, one of the GHG strategy requirements is the Carbon Intensity Indicator (CII). CII addresses actual emissions of vessels in operation and will be assessed annually as from 2023, with yearly stricter emission limits. A vessel can reduce its CII by a combination of measures, including use of alternative fuels.

Ports around the world are thus looking into on- shore power capabilities and offering alternative fuels such as LNG or other low-carbon fuels, to cater for the refueling demands of vessels calling there. Note that this benchmarking indicator is expected to include other low- and zero-carbon fuels, as they gradually will be commercially available in ports.

Port of top 5 pillar cities, only Rotterdam and Singapore have LNG bunker vessels. However, apart from Northern Europe and the Americas where emission control areas and strict national environmental regulations dictate the limitation of shipping emissions, the other cities in our pillar ranking are also heading in the same “green” di rection. Guangzhou is converting 8 domestic/in land vessels for use of LNG as fuel and building 6 LNG bunkering stations for inland river waterways before 2021 and is planning the construction of 8 LNG bunkering stations for main navigation channels by 2022. Hong Kong’s FSRU is set to begin operations in 2022 and could cater for LNG bun ker through its LNG bunker port.

Various LNG bunkering projects are also cur rently under decision in the Middle East region. A major LNG bunkering hub (annual capacity of 1 million tons) is under construction at Solar Port and expected to come on stream by 2025, to be operated by Total and Oman Oil Company. Across the Arabian Gulf, Shell and Qatar Petroleum have an agreement to establish a global LNG bunkering venture. In the UAE, ADNOC and INPEX have an agreement on LNG bunkering, in addition to ADNOC’s blue ammonia facility (currently in design phase at the TA’ZIZ industrial ecosystem and chemical hub in Ruwais, with carbon capture).
The final pillar in our ranking, the attractiveness and competitiveness of the cities, points to the future. The more attractive a city is, the stronger the growth that can be expected for it in the future. Cities must be regarded as attractive by their incumbent companies for the city to retain them, and by external companies to be attracted to them. Cities are complex economies with a range of factors that impact the decision-making process of a business to stay in an existing location or to move to a new one. Hence, industry experts’ judgement and objective indicators related to cities’ ease of doing business, the health of the entrepreneurial ecosystem, the competitiveness of maritime companies as shaped by cities’ cluster dynamics, cities’ attractiveness for relocating headquarters, operations and R&D, were used to benchmark the maritime cities in this study.

Overall, Singapore remains the most attractive and competitive maritime city in the world, measured by objective indicators and experts’ assessments. Singapore is unsurpassed in most of the benchmarking criteria used in this pillar, except for three of the objective indicators where Copenhagen (on Corruption Perceptions Index), New York (on Global Entrepreneurship Index) and Rotterdam (on Services Trade Restrictiveness Index) each take the first position.

Rotterdam, Oslo and Hamburg are next in the ranking for this pillar. Rotterdam has significantly improved its score for the attractiveness and competitiveness pillar compared to 2017 where it held the 8th rank, improving on both subjective and objective indicators. Rotterdam scores the highest in the Services Trade Restrictiveness Index which is used to identify which policy measures restrict trade. When looking at the Middle East, Dubai is a rising star amongst other traditional maritime cities of the world, although it is showing an overall reduction in the combined ranking in terms of attractiveness and competitiveness. Dubai ranks low for the objective indicators as these are measured on the country level, but is ranked much higher for subjective indicators, and is regarded by the industry experts as one of the top five most attractive locations to set up their operational offices.

“The most important factors for staying competitive are infrastructure and world class talent to allow both businesses and their people to not only connect but to thrive. Furthermore, commitment to improving technology and laws which support the digital space so that people can function and thrive.”

-MARITIME LAWYER, EAST ASIA
The Corruption Perceptions Index by Transparency International was used to rank the maritime cities for their transparency and corruption levels. A scale of 0 to 10 is used, where 0 is highly corrupt and 10 is very clean. In 2020, more than two-thirds of the countries scored below 50, which indicates that most countries fail to address corruption in their public system. The average score across all countries is 49 with a score of 50, China's maritime cities come out poorly in this indicator, with a value of 42 which is below the global average score of 43.

ENTREPRENEURSHIP
Entrepreneurship is one of the key drivers of economic growth and development and is used to assess a city's relative attractiveness and competitiveness. The Global Entrepreneurship Index was selected to evaluate the health of the entrepreneurship ecosystem in each location which was further complemented by the results from the experts' assessment. New York and the US-based maritime cities are the top indicator. Some Asian cities such as Hong Kong and Singapore, have managed to develop vibrant start-up ecosystems, clustered in specific centers, at the forefront of technological advancements. By taking advantage of a critical mix of available venture capital funding, a local, highly educated workforce and networking capabilities, they manage to consistently rank at the top of this chart.

London has kept its position as the second most attractive city for maritime headquarters. It also has an environment that promotes growth in start-up firms, particularly connected to maritime cleanliness and renewable energy carriers like hydrogen and gas energy. A major share of the startups spin out of R&D activities, both in universities, research institutes and R&D intensive companies.

INNOVATION AND ENTREPRENEURSHIP
When the maritime experts are asked what will be the most important factors for being a LMC (leading maritime city), they agree that emerging technologies and innovation are critical. When the industry experts are asked to choose the five leading maritime centers of the world? Singapore ranks first, followed by London, Shanghai, Hong Kong, Dubai and Oslo. Singapore has historically attracted international shipping and maritime companies to set up their base, strategically positioned at the crossroads of major trade and shipping routes connecting the East and the West, with a highly connected and competitive novelty index and serving as gateways for businesses to access high growth markets, such as China and India.

London is the most attractive maritime city in the next five years ahead. There is no question that London has the potential to be one of the top performers, with its unique combinations of transportation and logistics, financial services, and high-tech industries.

Dubai's attractiveness seems also to be strengthened in recent years. Being ranked at position 7 in 2019, Dubai has now passed both Shanghai and Hamburg. For other cities, there are only minor changes.

LOOKING FORWARD: LEADING MARITIME CITIES OF THE WORLD IN 5 YEARS
The maritime experts were asked to make predictions about the leading maritime cities of the world five years ahead. There seems to be a clear consensus among the experts that Singapore will remain the most important maritime city in 2026, while Shanghai is expected to become the second most important. Singapore is expected to retain its position as the leading maritime city of the world due to the size of its port, number of international-focused shipbrokers, financiers, lawyers and insurers present there, as well as the plethora of supportive government policies. Shanghai's increased importance is related to the growing influence of the Chinese economy, with an increasing number of maritime players moving their headquarter establishments there, to capitalize on their proximity to the Chinese production bases. China has the world's second-largest economy, and its export-oriented business environment is dependent on the trade of goods. China is expected to bypass the US as the world's largest economy before 2050 (Centre for Economics and Business Research, 2019).

London's performance may have faced disruptions, during the Brexit transitional stages, but it still remains one of the most popular cities to conduct maritime business, assisted by the high skill competence of its training centers, maritime education and the number of industries that are located there. When the industry experts are asked to choose the five maritime cities for relocating headquarters, Shanghai, Hong Kong, Dubai and Oslo are the most attractive. Shanghai is the leading maritime city, overtaking the 3rd position from Oslo, which is now ranked 4th. Oslo is regarded by the maritime experts, most of them located in Asian cities, as the global center for green technologies for the oceans, and also a vibrant center of entrepreneurship.

Rotterdam follows Oslo on the future perspective. Barcelona, Hamburg, and Copenhagen are potential contenders for the sixth position in this predictive ranking in the next five years. Dubai is in the same league as these other “traditionally” well-established maritime cities because the maritime industry experts recognize the city's developing quickly due to the strong backing from the local government to increase Dubai's presence in the global economy.

The most important aspect of this study is being an important trading center and becoming the preferred city for maritime activities within its wider region covering the Middle East, the Indian subcontinent and Africa.
APPENDIX A – INDICATOR RANKINGS FOR TOP 50 MARITIME CITIES GLOBALLY

| Index | Indicator | City 1 | City 2 | City 3 | City 4 | City 5 | City 6 | City 7 | City 8 | City 9 | City 10 | City 11 | City 12 | City 13 | City 14 | City 15 | City 16 | City 17 | City 18 | City 19 | City 20 | City 21 | City 22 | City 23 | City 24 | City 25 | City 26 | City 27 |
|-------|-----------|
| 1 | Economic Power | |
| 2 | Financial Services | |
| 3 | Maritime Logistics | |
| 4 | Maritime Connectivity | |
| 5 | Port Infrastructure | |
| 6 | Port Efficiency | |
| 7 | Port Security | |
| 8 | Port Environment | |

This table represents the rankings of the top 50 maritime cities globally based on various indicators.
APPENDIX B: METHODOLOGY AND DATA SOURCES

DEFINITIONS

WHAT IS THE DEFINITION OF THE MARITIME ACTIVITY?

During almost 20 years of research, Monex Economics has defined maritime activity as: “All companies that own, operate, design, build, or deliver equipment or specialized services to all kinds of ships and other floating units.” More specifically, for data collection purposes, we defined the maritime industry as economic activity of firms registered in the following NACE rev. 2 codes: 5010, 5020, 5030, 5040, 3001, 3012, 3103, 5224, 5224 and 7734. This industry categorization is broad in the sense that it covers four different sub-sectors, which all include maritime activity. The NACE rev. 2 codes 5010, 5020, 5030 and 5040 account for the shipping industry, while the codes 3001, 3012, 3103 account for the shipyard industry.

WHAT DOES THE NACE REV. 2 CODE MEAN?

The NACE rev. 2 codes: 5010, 5020, 5030, 5040, 3001, 3012, 3103 include maritime activity. The NACE rev. 2 codes 5010, 5020, 5030 and 5040 account for the shipping industry, while the codes 3001, 3012, 3103 account for the shipyard industry. The codes 5010, 5020, 5030, 5040, 3001, 3012, 3103 include maritime activity. The NACE rev. 2 codes 5010, 5020, 5030, 5040, 3001, 3012, 3103, 5224, 5224 and 7734. This industry categorization is broad in the sense that it covers four different sub-sectors, which all include maritime activity. The NACE rev. 2 codes 5010, 5020, 5030 and 5040 account for the shipping industry, while the codes 3001, 3012, 3103 account for the shipyard industry.

WHAT IS A CITY AND ITS GEOGRAPHIC BOUNDARIES?

In this report, we defined a city as encompassing an area that can be reached within a two-hour drive from the city center, approximating to a radius of 200 km from the city’s center. This definition is not sensitive to administrative boundaries, and captures most, if not all, relevant maritime economic activity related to a city.

DESCRIPTION OF DATA SOURCES AND THE ECONOMICS EXPERTS’ ASSESSMENT

We have built up a global panel of Maritime Industry Experts who have made thorough assessments of their own cities as well as ranked the nominated cities on a wide range of indicators. From a total of 285 respondents, 280 experts stated a city. These experts are based in 35 countries and are taken from a total of 128 cities. Almost 50% of the experts are from Asian countries, in particular from Singapore. Additionally, 100 out of 280 experts are from Singapore, followed by 25 experts from Dubai, and 22 experts from both Oslo and Shanghai. To avoid home bias, we have only included the questions where we asked experts to rank cities in terms of different aspects and indicators and have not used our own city assessments. In addition, we repeated our analysis with the sample of experts without the ones from Singapore as a robustness check against a potential home bias these could create. The robustness check was clear. The rankings did not change significantly after omitting the respondents from Singapore. Thus, we have utilized all answers in this year’s ranking.

SHIPPING CENTERS

CLARKSONS DATABASE

The Clarkson database (World Fleet Register) was used in multiple indicators. Under the shipping pillar, we have utilized information about both owners and managers, fleet size in terms of GT, fleet value in terms of USD billions and number of shipping companies with HQ in each shipowner’s city of registration (for shipping companies with more than five vessels in their portfolio). To evaluate fleet value at city level we have used WPM Vol 12 No 10 October 2021. We have used Clarkson database also to assess environmental friendliness of the world fleet where we utilized information about vessels’ engine and fuel type to measure carbon intensity in accordance with DNV’s Alternative Fuel Insights. The data were analyzed by Monex Economics.

BUREAU VAN DUK - ORBIS DATABASE

Bureau van Dijk’s Orbis database was used to gather information about operational revenue of shipping companies, which are defined as companies with NACE rev.2 codes: 5010 and 5020. The values were then allocated to the cities based on where the companies are registered.

The Orbis database contained information about the number of experts in maritime law on Who’s Who Legal and the number of maritime law firms on World Shipping Register. These two sources include a comprehensive list of maritime law firms and in over 100 national jurisdictions, and the two sources enable us to capture both the expertise and the extensiveness of maritime law activity in each city.

THE INTERNATIONAL UNION OF MARINE INSURANCE & BUREAU VAN DUK

The International Union of Marine Insurance (UIIM) provided a list of marine insurance premiums paid to insurance companies in each country for hull Transport/Cargo, Marine Liability Offshore Energy. In addition, premiums for P&I clubs are included. National values are then allocated to cities based on their corresponding maritime financial and marine insurance activity/importance. Each city’s share of the national values is computed by multiplying the national values with a ratio measuring each city’s relative financial and insurance importance, which we measure as the amount of non-life insurance premiums in each city relative to aggregate national non-life insurance premiums. A critical assumption is that all the firms in each city are dedicated to the location of the shipyards. To the database was also used to identify the environmentally friendly fleet that has been built after 2018, where we utilized information about vessels’ engine fuel and type to assess carbon intensity in accordance with DNV’s Alternative Fuel Insights. The data were analyzed by Monex Economics.

PETROFIN RESEARCH

Petrofin Research provided a list of the existing shipping portfolio of the top 40 shipping banks in the world. We used Petrofin’s publication from 2021 to allocate the corresponding values to cities according to banks’ maritime headquarter. The data covers full year 2020.

BUREAU VAN DUK - ORBIS DATABASE

We used Bureau van Dijk’s Orbis database to obtain the number of listed maritime companies in each city’s stock exchange. We identified maritime companies as companies that have NACE rev.2 codes: 5010, 5020, 5030, 5040, 3001, 3012, 3103, 5224, 5224 and 7734. We then allocated the values to the cities based on where the companies are registered.

To evaluate the trade level on stock exchange in each selected city, we analysed the data on the number of listed companies retrieved from the Clarkson’s Research Capital Markets (Shipping Intelligence Network). Furthermore, on the data, we allocated the corresponding values to cities based on the location of the headquarter of the owner company. Maritime patients are defined as patients with the following IPC codes: B63B, B63C, B63B5, B635, B63H, B63I, B63J.

WORLD SHIPPING REGISTER (WORLD-SHIPS.COM)

Data from World Shipping Register was used to collect information about the number of maritime schools located in the different cities.

PORTS AND LOGISTICS

LLOYD’S LIST TOP 100 PORTS 2021

Lloyd’s List rates the top 100 ports in the world based on TEU throughput. We used the 2021 list which contains data from 2020. Values were allocated to cities based on the location of the port.

DREWRY

Drewry provides a list with the top 21 port operators in the world yearly, based on TEU throughput. We used their list for 2019 and allocated values to cities based on the location of company headquarters.

UNCTAD

We used Liner Shipping Connectivity Index from UNCTAD to measure port performance. The index is based on 6 components that measure both connectivity and capacity of ports. We then allocate the LSCI index to cities based on the location of the ports.

ALTERNATIVE FUEL INSIGHTS, DNV

DNV Alternative Fuel Insights was used to gather information about ports with available bunkering facilities. Ports were ranked based on the aggregate tank capacity of LNG bunkering vessels who use the port for bunkering.

Then the values for all categories were allocated to cities that they are located at.

ATTRACTIVENESS AND COM-PETITIVENESS

THE WORLD BANK

We have used the Ease of Doing Business Index and the Burden of Customs Procedure Index provided by the World Bank. These indexes are on the national level, but since laws, rules and regulations often are identical across cities within a country, we argue that the indexes are representative on the city level.

TRANSPARENCY INTERNATIONAL

The Corruption Perceptions Index, which measures the perceived level of public sector corruption, is based on data from Transparency...
The OECD Services Trade Restrictiveness Index (STRI) provides up-to-date information on regulatory changes that affect trade in services in 46 countries across 22 sectors. We use the STRI index on maritime transport sector to measure restrictiveness in countries.

Changes in Methodology and Indicators from the 2019 Edition

- Modification of the weightage (and importance) of the pillar “Attractiveness & Competitiveness” during both the initial ranking (i.e., objective assessment of 15,000 cities to identify the initial top 50 cities), and the final ranking (i.e., objective and subjective assessment of cities to get the final ranking of the top 50 cities). This was done because the data for the objective indicators in this pillar are at a country-level, as opposed to being city-level, which gives an unfair boost (during the initial ranking) to cities that did not perform well on the other four maritime pillars, but which will suddenly perform well overall due to high national values (typical situation for small cities in Denmark, Norway, and New Zealand). Hence the weightage used for the pillar “Attractiveness & Competitiveness” was:
 - Initial ranking: weightage of 0% to overtook the importance of national values which may not apply to all cities within the same country but to instead emphasize that the initial identification of top 50 cities consists only of cities that perform well on the other four maritime pillars.
 - Final ranking: weightage of 20% to bring back the importance of attractiveness and competitiveness in the final and global benchmarking of the top 50 cities.
- Modification of some pillar-specific indicators to ensure that each of the 4 maritime-related pillars has a “green” indicator to reflect the decarbonization trend of the maritime industry. The changes for the indicators are:
 - Pillar “Shipping”: addition of 2 new objective indicators (operational revenue of shipping companies; share of the fleet with low-carbon-intensive fuel types), and removal of 1 subjective indicator on preferred relocation of company’s HQ which was previously a duplication under Pillar “Attractiveness & Competitiveness”.
 - Pillar “Maritime Technology”: addition of 2 new objective indicators (use of fleet delivered by shipyards which are low-carbon-intensive fueled ships; operational turnover of companies in the maritime technology industry). Furthermore, the patents indicator is now based on the number of maritime patents owned by any company, while the previous edition contained information about number of any type of patents owned by maritime companies.
 - Pillar “Ports & Logistics”: removal of 2 objective indicators regarding the cargo tonnage volume handled in ports (since updated reliable data could not be sourced), and the quality of port infrastructure (which is provided by the World Bank but measured subjectively based on business executives’ perception of their country’s ports facilities). Addition of 2 new objective indicators on liner shipping connectivity index and ports with available LNG bunkering facilities.
 - Pillar “Attractiveness & Competitiveness”: modification of 1 objective indicator from the burden of customs procedure to a more detailed indicator about discriminatory measures – restrictions on foreign entry, movement of people, barriers to competition, regulatory transparency – for maritime transport and logistics cargo handling which is sourced from OECD’s Services Trade Restrictiveness Index.
 - Modification of some data sources across all pillars, to ensure the latest reliable information is used. We have put more work into quality check of raw data and aggregation of cities to encompass with the 2-hour drive rule.
 - In this year’s ranking, we have included the subjective city assessment for all cities in the top 50 city pool. Hence, the final ranking of the top 50 cities utilizes information on both objective and subjective data for all cities across all five pillars. In the previous editions of the report, the subjective assessment has only been applied for the top 15 cities within the pool of top 50 cities.
 - We have also changed the way we normalize data across indicators to make up the pillar rankings and thus the overall rankings. We have now adopted a classical machine learning technique to normalize values for each indicator value by subtracting the indicator mean and dividing by the standard deviation of the series. In this manner, each indicator is standard normalized with a mean of zero and a standard deviation of 1. Because some of the indicators contains high levels of kurtosis (skewness), we divided all normalized indicators by its maximum value. Hence, extreme values are still present within each indicator, but between indicators the skewness will not alter the pillar scores. For those cities that have missing values reported on indicators, we have enforced a small penalty to avoid that missing values are treated like performing average. In this way, all the indicators are directly comparable.